

dipole wat interaction = 5 2 + 10 ton-dipole in seraction

Sulfur oxide (IV) SO₂

Sulfur oxide (VI) SO₃

CO₂ carbon oxide (IV)

CO carbon oxide (II)

6 Strong Acids		6 Strong Bases	
HCIO ₄	perchloric acid	LiOH	lithium hydroxide
HCI	hydrochloric acid	NaOH	sodium hydroxide
HBr	hydrobromic acid	кон	potassium hydroxide
HI	hydroiodic acid	Ca(OH) ₂	calcium hydroxide
HNO ₃	nitric acid	Sr(OH) ₂	strontium hydroxide
H ₂ SO ₄	sulfuric acid	Ba(OH) ₂	barium hydroxide

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA-NC</u>

Acidity and pH scale

рН	Examples of solutions	
0	Battery acid, strong hydrofluoric acid	
1	Hydrochloric acid secreted by stomach lining	
2	Lemon juice, gastric acid, vinegar	
3	Grapefruit juice, orange juice, soda	
4	Tomato juice, acid rain	
5	Soft drinking water, black coffee	
6	Urine, saliva	
7	"Pure" water	
8	Sea water	
9	Baking soda	
10	Great Salt Lake, milk of magnesia	
11	Ammonia solution	
12	Soapy water	
13	Bleach, oven cleaner	
14	Liquid drain cleaner	

https://youtu.be/j26rvp-j5ds

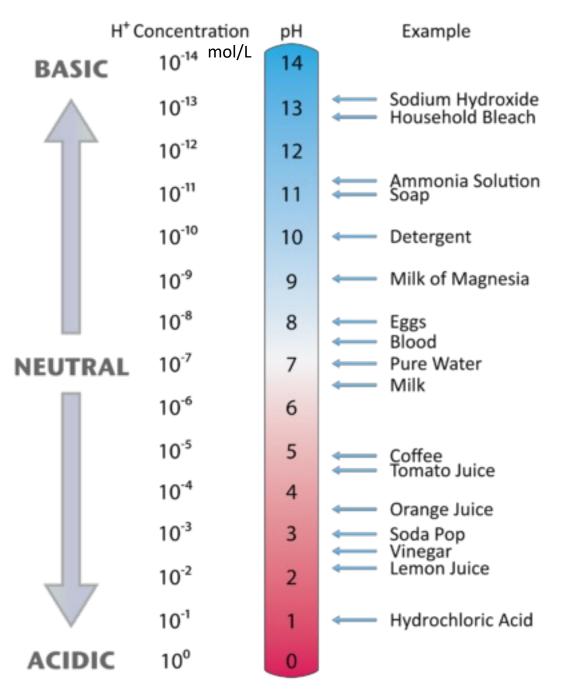
Dissociation of acids and bases

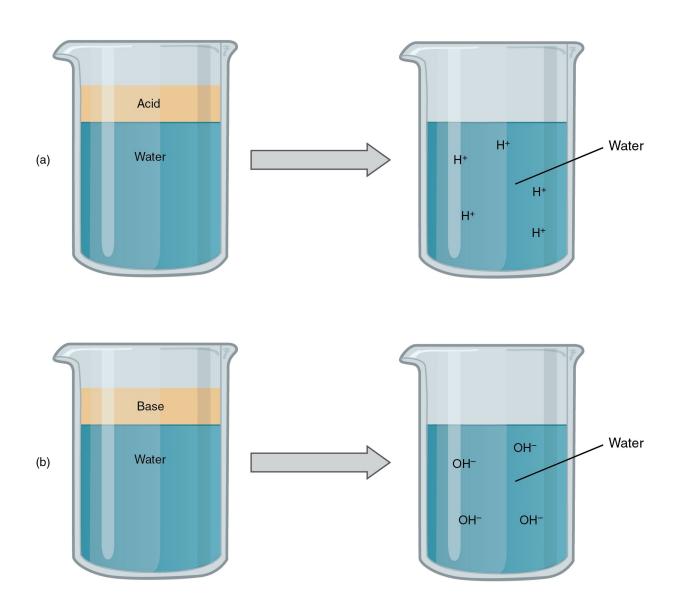
strong acid:

$$HCI + H_2O \longrightarrow H^+ + CI^-$$

weak acid:

$$CH_3COOH + H_2O \longrightarrow CH_3COO^- + H^+$$


strong base:


NaOH +
$$H_2O$$
 \longrightarrow Na+ + OH-

weak base:

$$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$$

HU -> H+ Cl dissociation of acik the proton is very "agressive" HCl + 420 -> 430+ + ce-Acids throw off protons. Bases take the proton. Dissociation of base NaOH -> Nat + OH In the solution 6 ases take the proton H30+ + B -> H20+ HB

This Photo by Unknown Author is licensed under CC BY-SA

Dissociation of water

$$H_2O \rightarrow H^+ + OH^-$$

In pure water the concentration of H⁺ and OH⁻ is equal at 10⁻⁷ mol/L, pH 7.