HW 20

Answers to HW19

$$
\begin{aligned}
& \text { HW/g } \\
& \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \text { what rolume of corbon dioxide s } \\
& \text { produced when } 0.36 \mathrm{~L} \text { fo propene } \\
& \text { react with } 0.36 \mathrm{~L} \text { of } \mathrm{O}_{2} \text { at STP. } \\
& \text { 1. coefficients } \\
& 2 \mathrm{C}_{3} \mathrm{H}_{6}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \\
& \text { We need } 4.5 \text { tives wore } \mathrm{O}_{2} \text { than } \\
& \text { 2. } \mathrm{C}_{3} \mathrm{H}_{6} \text { But we don't have it, } \\
& \text { do our limiting reactand is } \\
& \mathrm{O}_{2} \text { we will bor calculation } \\
& \text { on } 0.362 \text { Of } \mathrm{O}_{2} \\
& \text { 3. ration of } \mathrm{O}_{2} \text { to } \mathrm{CO}_{2} \\
& \text { The volume of } \mathrm{CO}_{2} \frac{0.36}{3}=0.24 \mathrm{~L}
\end{aligned}
$$

An explosion took place

$$
\begin{aligned}
& 2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+2 \mathrm{NaOH} \\
& 2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \overline{\mathrm{H}}_{2} \mathrm{O} \text { (explosion) }
\end{aligned}
$$

How much (by 5olume). hydrogen

$$
\begin{aligned}
& \text { exploded if } \frac{2.3 \mathrm{f}}{\mathrm{Na}} \text { of Na. }
\end{aligned}
$$

reactle? ivoles of Na

$$
\begin{aligned}
& \text { 1. Let s find woles of Na } \\
& 2.3 \mathrm{Na} \rightarrow \frac{2.38}{23}=0.1 \mathrm{~mol} \text { puol }
\end{aligned}
$$

2. Basd on the coefficients we

$$
\begin{aligned}
& \text { Basd on the coefficients we } \\
& \text { will get two times less } H_{2} \rightarrow 0.05 \mathrm{ed}
\end{aligned}
$$

$$
\text { 3. } 1 f 22.4 \mathrm{~L} \text { has } 1 \text { wole of } \mathrm{H}_{2}
$$

$$
\begin{aligned}
& \text { 3. } \frac{1.12 \mathrm{~L}}{\text { wol of }} \mathrm{H}_{2} \text {. }
\end{aligned}
$$

We hove a flask with a volume

$$
\text { of } 5.6 \mathrm{~L}, a+0^{\circ} \mathrm{C} \text {. We }
$$

$$
\text { mix } 36.5 \mathrm{~g} \text { of thee }
$$

$$
7.18 \text { of } \mathrm{Cl}_{2}
$$

$$
\begin{aligned}
& 7.18 \text { of } \mathrm{NH}_{3} \\
& 3.48 \text { of } \mathrm{N}^{3} \mathrm{f} \text { of } \\
& \text { hase the of }
\end{aligned}
$$

we hase the following reaction

Fipure ont the atwospheric pressure
inside the flask

1. Convert werything to moles 36.5 f Hee
M of vel $35.5+1=365$ M of woles $=1$ 7.1 p of $\mathrm{Cl}_{2} \quad n=7.1 \div 71 \mathrm{puol}^{1}=0.1 \mathrm{~mol}$ 3.4 f of $\mathrm{NH}_{3} \quad 3.4 \div 17=0.2 \mathrm{~mol}$ Cl_{2} dous not participate in the reaction. We mind $\mathrm{NU}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{Cl} \downarrow$
HCl
 NU_{3} is limitimp reactant only 0.2 ure eft wit $1-0.2=0.8$ core We are
of vee
O.p wo of Uce and 0.1 wor of Cl_{2}
left as gases in the flask, left as gasesin
total $0 . q$ moles

$$
P=\frac{n R T}{V}=\frac{0.9 \times 22.4}{5.6 L}=3.6 a+m
$$

$$
\begin{aligned}
& \xrightarrow\left[\left(\mathrm{HCl}(g)+N \mathrm{H}_{3}(g)\right]{(\mathrm{g})} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s})\right. \text { D) } \\
& \text { The } \mathrm{NH}_{y} \mathrm{Cl} \text { - orystal fipm. }
\end{aligned}
$$

Oxygen

- To calculate masses of products and reactants using balanced chemical equations we use a unit called mole. One mole of a substance is the amount whose mass equals the molecular or atomic weight (in atomic mass units, amu) of the substance expressed in grams. This means that molecular weight of any substance in amu (from periodic table) is equal to molar weight in grams.
- A mole of anything has 6.022×10^{23} particles. This is called Avogadro's number, after Amedeo Avogadro, who first suggested that equal volumes of gas have equal numbers of molecules.
- 1 mole of any gas takes a volume of 22.4 liters at "normal conditions ". This is a molar gas volume under the normal conditions. Normal conditions are temperature of $0^{\circ} \mathrm{C}(273 \mathrm{~K})$ and pressure of 1 atm (101 325 Pa)
- For conditions that differ from normal we use the ideal gas equation: $\mathrm{pV}=\mathrm{nRT}$
n - gas mole number
p - gas pressure (atm)
V - gas volume (liters)
T - temperature (K)
R - gas constant ($0.0821 \mathrm{I} \times$ atm $/$ mole $\times \mathrm{K}$)

Questions

1. A person needs about 1 mole of oxygen per hour to breath. Calculate how much $\mathrm{Na}_{2} \mathrm{O}_{2}$ in grams will be needed for a 24 -h trip in a single-person submarine using the following equation:

$$
\mathrm{Na}_{2} \mathrm{O}_{2}+\mathrm{CO}_{2} \rightarrow \quad \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{O}_{2}
$$

2. There are 10 g of each: $\mathrm{KMnO}_{4}, \mathrm{KClO}_{3}, \mathrm{KNO}_{3}$ in the lab. How many liters of oxygen can be obtained from each of these reagents? Use the following equations:

$$
\begin{aligned}
& 2 \mathrm{KMnO}_{4}->\mathrm{K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2}(\mathrm{~g}) \\
& 2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}(\mathrm{~g}) \\
& 2 \mathrm{KNO}_{3} \rightarrow 2 \mathrm{KNO}_{2}+\mathrm{O}_{2}(\mathrm{~g})
\end{aligned}
$$

