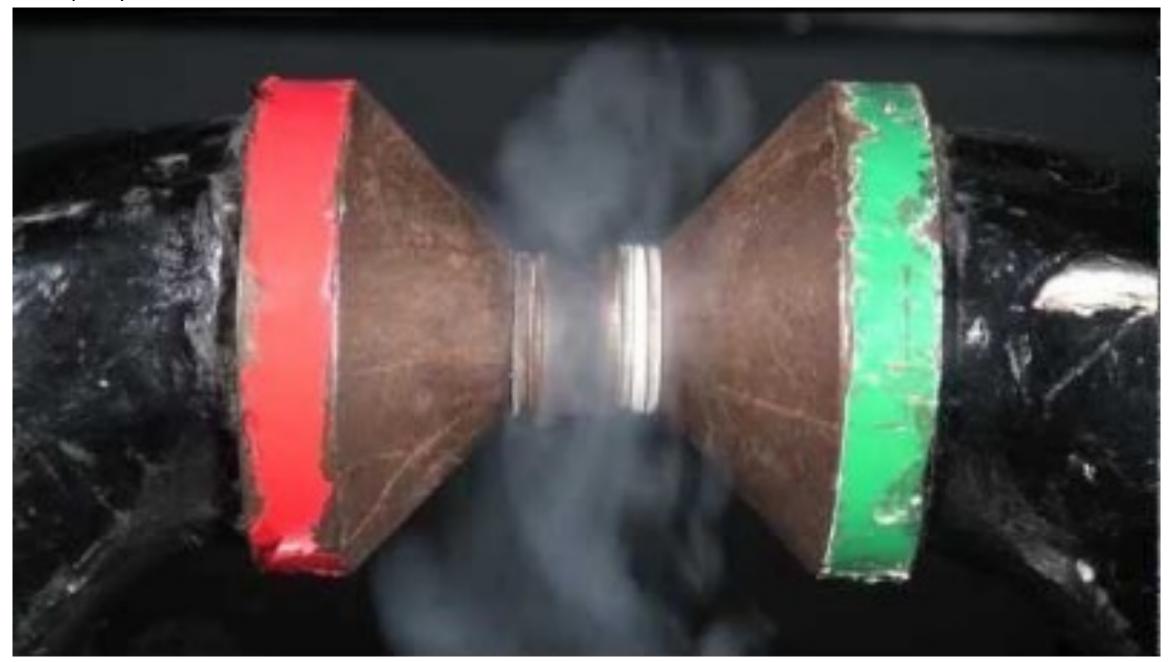


Fe₂O₃ hematite (red)

[FeO(OH)+H₂O] Limonite (yellow)

 $\underline{\text{This Photo}} \text{ by Unknown Author is licensed under } \underline{\text{CC BY}}$

Oxygen in nature


- Oxygen is the most abundant element in the Earth crust - in minerals and combined with other elements it makes up 47% of its mass
- In the atmosphere it is present at 21% by volume or at 23% by mass
- Earth's hydrosphere contains 86-89% of oxygen by mass

Oxygen

- Element # in Periodic table
 - Chemical symbol O
 - Atomic mass 16
- Electron configuration 1s²2s²2p⁴

- Valency of oxygen in its compounds is II
 - Most common oxidation state is (-2)
- Molecule of oxygen is O_2 with molecular weight 32 g/mole

https://youtu.be/Lt4P6ctf06Q

Obtaining oxygen

- In industry oxygen is produced from liquid air (high compression with heating up \rightarrow expansion with strong cooling down \rightarrow liquid air (liquid oxygen boils at (-183°C), liquid nitrogen boils at (-196°C)) \rightarrow slow temperature increase to separate the gasses (distillation)
 - In laboratory:

$$2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$$

$$2KClO_3 \rightarrow 2KCl + 3O_2$$

$$2KNO3 \rightarrow 2KNO2 + O2$$

2
 $H_{2}O_{2} \rightarrow 2H_{2}O + O_{2}$

$$2Na_2O_2 + 2CO_2 \rightarrow 2Na_2CO_3 + O_2$$

https://youtu.be/_Y1alDuXm6A

Burning is a fast oxidation process with the release of heat and usually of light

https://youtu.be/mXv38UvP_tQ

https://youtu.be/l13UkaZQ4Ec

Slow oxidation

$$2Cu + O_2 = 2CuO$$

$$4\text{Fe} + 320_2 + 2\text{nH}_2\text{O} = 2 \text{Fe}_2\text{O}_3 \cdot \text{n} \text{H}_2\text{O}$$

$$O_2 + 2H_2 = 2 H_2O$$
 explosive reaction

https://youtu.be/iCXQ3nKF2no