HW19 Calculations involving moles, masses and volumes of gases.

- 1 mole of any gas takes a volume of 22.4 liters at "normal conditions ". This is a molar gas volume under the normal conditions. Normal conditions are temperature of $0^{\circ} \mathrm{C}(273 \mathrm{~K})$ and pressure of 1 atm (101 325 Pa)
- For conditions that differ from normal we use the ideal gas equation: $\mathrm{pV}=\mathrm{nRT}$
n - gas mole number
p - gas pressure (atm)
V - gas volume (liters)
T - temperature (K)
R - gas constant (0.0821 I \times atm/ mole $\times K$)

Worked examples from the previous homework and from the class (also look at the notes from the previous homework HW18):

$$
\begin{aligned}
& \text { (1) } \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} \\
& \text { 1. Write down coefficients } \\
& 2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \\
& \text { The che of oficient rel you that } \\
& \text { hydrogen pas reacts with oxygen } \\
& \text { gas exactly open we have } \\
& \text { 2. } 4 \mathrm{y} \text { of } \mathrm{H}_{2} \quad n=4 \mathrm{l} 2 \mathrm{tmw} \mathrm{~m}^{-1}=2 \text { mole } \\
& 64 \mathrm{pot} \mathrm{O}_{2} n=64 \mathrm{p} / 32 \mathrm{pmol}^{-1}-2 \mathrm{~mole} \\
& \text { We see that we hare } 2 \text { moles of. } \mathrm{H}_{2} \\
& \text { we curd }{ }^{2} \text { voles of } \mathrm{O}_{2} \text { in excess. not } 2 \text { il } \\
& \text { we have } O_{2} \text { in } e x \text { tels. } \\
& 1 \text { mole of } \mathrm{O}_{2} \text { would be enough } \\
& \text { have 2. mole ind } \\
& 1 \text { mole in excess. I mole of } O_{2} \\
& m=n \cdot m \quad m=I_{\text {mol }} \times 32 \text { poole }^{-1}=32 \mathrm{p} \\
& \text { Answer: } 32 \mathrm{~g} \text { of } \mathrm{O}_{2} \text { remarim unreached. } \\
& \text { A gas has a density } 3.17812
\end{aligned}
$$

$$
\begin{aligned}
& \text { has two identicne stowe in a } \\
& \text { mole cull } \\
& \text { 1. } d=\frac{p m}{R T} \\
& \mu=\frac{d \cdot R T}{P} \\
& \text { density } \\
& M=\frac{3.17 \times 22.4}{\Delta}=\frac{71 \rho \cdot m o 1^{-1}}{\underline{a}} \\
& \text { 2. Look at the per table and at } 2 \text { identical sous }= \\
& \text { element's cosmic weiplut } 71: 2= \\
& =35.5 \text {. The elencest } \\
& \text { chlorine. the gas } C l_{2} \text {. }
\end{aligned}
$$

(1) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

If 15 open reacts with 0.3 L of methane how much oxygen $\left(\mathrm{O}_{2}\right)$
will be left at the enl of the reaction.

1. We have our coefficient's at place, so we can tael that molar ratio of CH_{4} and O_{2} is
1 to 2
2. We have $0.3 \mathrm{~L}^{2}$ of CH_{4} and 1 L of O_{2}. From the molar ration we know that we reed only twice as much O_{2} to completely react with CH_{φ}. It means we need $0.3 \mathrm{~L} \times 2=0.6 \mathrm{~L}$ of O_{2} 3. At the begininp we had 1 Loo O_{2}. $1 L-0.6 L=0.4 L$ of O_{2} remained.
(2) We hare standart conditions calculate the volume of CO_{2} produced when 10 go of calcium carbonate deconposes $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(q)$

- 1. We have 10 p of CaCO_{3}. We can calenlate the number of moles. $n=m /\left.\mu\right|_{1-1} \times{ }_{100} \mathrm{CaCO}_{3}=$

10 g of CaCO_{3} has 0.1 voles
2. Look at the coufficient in the chemical equation. Molar ration of $\mathrm{CaCO}_{3}: \mathrm{CO}_{2}$ $1: 1$ If we ans
if we hare 0.1 mol of CaCO_{3}, we will end up with
0.1 mol of CO_{2}
3. Convert moles to volume Remember 22.4 L will have I mole of any gas. It means 2.24 L will have 0.1 mole.
The answer. $10 \mathrm{gof} \mathrm{CaCO}_{s}$ will produce 2.24 L of CO_{2}.

Questions:

1. Propene undergoes combustion
$\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Find equation coefficients. Find the volume of carbon dioxide is produced when 0.36 L of propene react with 0.36 L of oxygen at 273 K and 100 kPa pressure?
2. An explosion took place because of the following two reactions:
$\mathrm{Na}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2}+\mathrm{NaOH}$
$2 \mathrm{H}_{2}+\mathrm{O}_{2}=2 \mathrm{H}_{2} \mathrm{O}$ (explosion)
Find equation coefficients for the first equation and calculate how much (by volume) hydrogen exploded if 2.3 g of Na reacted.
3^{*}. We have a flask with a volume of 5.6 L . The flask is kept at 0 degrees C , we mix 36.5 grams of HCl and 7.1 grams of Cl_{2} and 3.4 grams of NH_{3}. A reaction occurs in the flask:
$\mathrm{HCl}(\mathrm{g})+\mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
The product of the reaction $\mathrm{NH}_{4} \mathrm{Cl}$ is in crystal form.
Figure out the atmospheric pressure inside of the flask.
