58.5 g of NaCl in 1 L ,

We have 1 molar solution of sodium chloride. If we have 0.25

L of the solution, the sodium chloride concentration is 4 $\mathrm{mol} / \mathrm{L}$

$$
\begin{gathered}
\mathrm{HCl}_{\text {(gas) }}+\mathrm{NH}_{3} \text { (gas) } \rightarrow \mathrm{NH}_{4} \mathrm{Cl}_{\text {(golid) }} \\
2 \mathrm{H}_{2 \text { (gas) }}+\mathrm{O}_{2 \text { (gas) }} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \text { (gas) } \\
\mathrm{H}_{2 \text { (gas) })}+\mathrm{Cl}_{2 \text { (gas) }} \rightarrow 2 \mathrm{HCl}_{\text {(gas) }}
\end{gathered}
$$

Equal gas volumes (at equal temperature and pressure) contain the same number of particles

- 1 mole of any gas takes a volume of 22.4 liters at "normal conditions ". This is a molar gas volume under normal conditions.
- Normal conditions are temperature of $0^{\circ} \mathrm{C}$ (273 K) and pressure of 1 atm (101325 Pa)

Avogadro's Law

Equal volumes of ideal gases measured at the same temperature and pressure contain the same number of molecules.

22.4 L - the volume that one mole of any gas occupy under normal conditions.

This Photo by Unknown Author is licensed under CC BY-SA-NC

Clapeyron-Mendeleev equation

Under standard
conditions $\mathrm{RT}=22.4$
(0.0821×273), pressure $=$
latm. In 22.4 L we will
have $\mathrm{n}=1$.
$\mathrm{n}=\mathrm{pV} / \mathrm{RT}$
$\mathrm{n}=1 \times 22.4 / 22.4=1$
22.4 L contains 1 mole of
any gas.
$p V=n R T$
$n-$ gas mole number
$p-$ gas pressure (atm)
V - gas volume (liters)

T - temperature (K)
R - gas constant ($0.08211 \times \mathrm{atm} /$ mole $\times \mathrm{K}$)

Example

A closed flask of 2.6 L contains oxygen under the pressure of 2.3 atm and temperature of $26^{\circ} \mathrm{C}$.
How many moles of O_{2} are there in the flask?

$$
\begin{gathered}
\text { pV }=n R T \\
n=\text { PV/RT } \\
n=(2.3 \mathrm{~atm} \times 2.6 \mathrm{~L})(0.0821(\mathrm{~L} \times \mathrm{atm} / \mathrm{mole} \times \mathrm{K}) \times 299 \mathrm{~K}) \\
273 \mathrm{~K}+26^{\circ} \mathrm{C}=299 \mathrm{~K}
\end{gathered}
$$

Ideal Gas Equation is

$$
\begin{aligned}
& P V=n R T \quad n=n o \cdot \text { of moles } \\
& P \times V=\frac{\text { mass }}{\text { molarmass }} \times R \times T \\
& n=\frac{\text { wight } / \text { mass }}{\text { molar mass }} \\
& \text { Let molar mass }=M \\
& \Rightarrow \quad P \times V=\frac{m}{m} \times R \times T \\
& \text { mass }=m \text {. } \\
& \Rightarrow \quad M=\frac{m \times R \times T}{P \times V} \\
& \text { We know that density }=\frac{\text { mass }}{\text { volume }}=\frac{m}{v} \therefore d=\frac{m}{v} \\
& \text { Substitute the value } \frac{m}{V} \text { with } d \\
& \therefore M=\frac{d \times R \times T}{\rho}
\end{aligned}
$$

