The number of moles present in the certain mass of a substance can be figured out using the following equation

Number of moles (n) = mass of substance/ molar mass

n = m/M

Molar mass numerically equal to molecular mass (M_r), but Molar mass has its own units. The unit for M (molar mass) is g/mol or gmol⁻¹

Mass of substance (m) must be in grams.

The units for moles is mol.

Consider sulfur, if Ar of S is 32.06

Molar mass of sulfur 32.06 gmol⁻¹

This means 32.06 g of S contains 6.02×10^{23} sulfur atoms or 1 mole of sulfur.

• An example of stoichiometry calculations Calculate how many grams of water and sulfur trioxide is needed to produce 100g of sulfuric acid according to the following chemical reaction:

		1	
	SO ₃	H ₂ O	H ₂ SO
Molecular weight	80	18	98
Molar weight	80	18	98
(g/mole)			
Coefficients	1	1	1
(moles reacting)			
Known	?	?	100g
Number of moles	1.02	1.02	100/98 = 1.02
to obtain the			
product and			
needed of			
reagents			
Mass needed (g)	1.02(mole)x80(g/mole)=81.6(g)	1.02(mole)x18(g/mole)=18.36 (g)	

 $SO_3 + H_2O \rightarrow H_2SO$

If the coefficients of the reactions were different from 1 you would have to calculate the number of moles of the reagents needed for the number of moles of the product using the reaction coefficients. For example, in the following reaction of S and O₂ 2 moles of S react with 3 moles of O₂ to produce 2 moles of SO₃. In this case to obtain 1 mole of SO₃ you would need 1 mole of S and 3/2 moles of O₂.

 $2S + 3O_2 \rightarrow 2SO_3$

Questions

- 1. Write down the total number of hydrogen atoms in each of the following
- a) 1.00 mol H₂
- b) 0.200 mol CH_4
- c) 0.0500 mol NH₃
- How many moles of hydrogen gas are produced when 0.4 mol of sodium react with excess of water
 2Na + 2H₂O → 2NaOH + H₂
- 3. How many moles of O_2 react with 0.01 mol C_3H_8 ?

 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

4. Calculate the mass of arsenic(III) chloride produced when 0.15 g of arsenic reacts with excess chlorine
 2As + 3Cl₂ → 2AsCl₃