One mole is the amount of substance that contains the same number of particles (atoms, ions, molecules etc.) as there are carbon atoms in 12 g of carbon 12

$$
\begin{aligned}
& 1 g \text { of } \mathrm{H}-6.02 \cdot 10^{23} \text { atoms of }-\mathrm{H} \\
& 12 g \text { of } \mathrm{C}-6.02 \cdot 10^{23} \text { atoms of } C
\end{aligned}
$$

The number of moles present in the certain mass of a substance can be figured out using the following equation

Number of moles (n) = mass of substance/ molar mass
$n=m / M$
Molar mass numerically equal to molecular mass $\left(\mathrm{M}_{\mathrm{r}}\right)$, but Molar mass has its own units.
The unit for M (molar mass) is $\mathrm{g} / \mathrm{mol}^{2}$ or gmol^{-1}
Mass of substance (m) must be in grams.
The units for moles is mol.
Consider sulfur, if A_{r} of S is 32.06
Molar mass of sulfur $32.06 \mathrm{gmol}^{-1}$
This means 32.06 g of S contains 6.02×10^{23} sulfur atoms or 1 mole of sulfur.

How many grams of sulfur do you need to have $\mathbf{3}$ moles of sulfur?

The number of particles

$1 \mathrm{~mol} \mathrm{O}_{2}$
It means that we have one mole of O_{2} molecules, $6.02 \times 10^{23} \mathrm{O}_{2}$ molecules. Each O_{2} molecule contains two oxygen atoms therefore one mole of O_{2} molecules contains $2 \times 6.02 \times 10^{23}=1.204 \times 10^{24}$ oxygen atoms (2 moles)

Calculations using chemical equations

Calculate how many grams of water and sulfur trioxide is needed to produce 100 g of sulfuric acid according to the following chemical reaction:

$$
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}
$$

	SO_{3}	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$
Molecular weight	80	18	98
Molar weight (g/mole)	80	18	98
Coefficients (moles reacting)	1	1	1
Known	$?$	$?$	100 g
Number of moles to obtain the product and needed of reagents	1.02	1.02	$100 / 98=1.02$
Mass needed (g)	1.02 (mole) $\times 80(\mathrm{~g} / \mathrm{mole})=81.6(\mathrm{~g})$	$1.02($ mole $) \times 18(\mathrm{~g} / \mathrm{mole})=18.36(\mathrm{~g})$	

80 g of sulfur trioxide reacts exactly and completely with 18 g of water, 98 g of sulfuric acid is formed.

