$$
0_{0}^{\circ 0} . \mathrm{O}_{2}-\mathrm{H}_{2} \mathrm{O}=0
$$

 Chemistry 8 Solutions and

$\because \circ$

$\stackrel{\wedge}{\wedge} 4 \mathrm{H}_{2} \mathrm{CO}(2 \mathrm{Mg})$

DisSolution, Solutions

- Solution is a special type of homogeneous mixture composed of two or more substances. The most common state of solutions is liquid.
- The composition of a solution can change.
- In a solution a solvent is the one that is taken in a larger quantity and has the same aggregate state as the solution.
- The solute is the substance dissolved in a solvent.
- In the case of water - water is always a solvent.

Solutions, disSolution

- Solutions can be solid (hydrogen dissolved in metals)
- There are no gas solutions because there are no interactions between gas molecules.

Solutions

- Solution where a given substance cannot dissolve anymore is called saturated (under the given conditions)
- Solubility is an ability of a substance to dissolve in a solution.
- The measure of solubility is the amount of the substance in its saturated
 solution

Temperature, ${ }^{\circ} \mathrm{C}$

Solution concentration

- Concentration is a relative amount of a solute in a solution
- The mass fraction is the ratio of the mass of a solute to the mass of the solution.

Molar concentration is the ratio of amount of solute in moles to the volume in liters

Example - 1

Magnesium Sulfate (25% solution) is used to decrease blood pressure.
This means that 100 g solution contains $25 \mathrm{~g} \mathrm{MgSO}_{4}$. How to prepare such solution?

To prepare such solution we will need to take 25 g and 75 g of water: $25+75=100 \mathrm{~g}$
Percent concentration: $(25 \mathrm{~g} / 100 \mathrm{~g})(\times 100 \%)=25 \%$

Example - 2

Only $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ is available.
We will need to calculate what amount of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ contains 25 g of MgSO_{4} and how much water is in that amount of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.

Preparation of the 25% solution with $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ will require less water.

Example 3

Let's consider 1 M solution of AgNO_{3}. This means that 1 L of such solution contains 1 mole of AgNO_{3}.

We need to conduct the following reaction:

$$
\mathrm{AgNO}_{3}+\mathrm{NaCl} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}
$$

What volume of 1 M NaCl do we need to take to react with 1 M solution of AgNO_{3} for all the reactants to react fully?

According to the reaction 1 mole of each reacts. For solutions with equal molar concentrations, we need to take equal volumes.

This class uses the materials from the following books:
"
Manyuilov and Rodionov "Chemistry for children and adults"
Kuzmenko, Eremin, Popkov "Beginnings of chemistry" http://school-collection.edu.ru (experiments)

