Density and Buoyancy

-Density:

$$
\rho=\frac{\text { Mass }}{\text { Volume }}
$$

Bouyancy Force $=\rho_{\text {fluid }} V g$

here V is the volume of submerged part of the body, $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Homework 21

Problem

A hot air balloon has volume $2500 \mathrm{~m}^{3}$, and is filled with hot air. Density of hot air is $1 \mathrm{~kg} / \mathrm{m}^{3}$, while density of the atmospheric air around it is $1.3 \mathrm{~kg} / \mathrm{m}^{3}$. The mass of the balloon envelope is 400 kg . What is the maximal load the balloon could carry?

