MATH 6: HANDOUT 21
 MATH BATTLE

1. The vertices of a triangle are $A(4,3), B(6,-1), C(-2,-5)$. L,M are midpoints of BC and CA . Find the coordinates of L and M and show that $L M=\frac{1}{2} B A$
2. (a) Draw the graph of the equation $x^{2}+y^{2}-1=0$.
(b) Draw the graph of the equation $x^{2}+(y-1)^{2}-1=0$.
(c) Draw the graph of the equation $(x+2)^{2}+(y+3)^{2}=4$.
(d) Draw the graph of the equation $x y=0$.
3. Prove:

Theorem 20. Let $A B C D$ be a quadrilateral such that opposite sides are equal: $A B=C D, A C=B D$. Then $A B C D$ is a parallelogram.
4. Sketch the following function:

$$
f(x)=\left\{\begin{array}{lll}
x^{2} & \text { if } & x \leq 0 \\
x & \text { if } & x>0
\end{array}\right.
$$

5. Show that each rhombus is a parallelogram.
6. Assuming that $\overline{L J}\|\overline{W K}\| \overline{A P}$ and that $\overline{P L} \| \overline{A G}$ in the following figure, prove that $m \angle 1=m \angle 2$

7. Given $\triangle A B C$, let D be on $A B$ such that $\angle A C D$ is equal to $\angle B C D$. Suppose we wish to place a point E on $\overline{B C}$ such that $\triangle C E D$ is isosceles. Prove then that we must have $A C \| D E$.

8. Show that if, in a quadrilateral $A B C D$, diagonally opposite angles are equal ($m \angle A=m \angle C, m \angle B=m \angle D$), then opposite sides are parallel. [Hint: show first that $m \angle A+m \angle B=180^{\circ}$.]
9. In a trapezoid $A B C D$, with bases $A D, B C$, let E be the midpoint of side $A B$ and F be the midpoint of side $C D$. Show that $E F \| A D$. [Optional: Can you prove that $E F=\frac{1}{2}(A B+C D)$? The figure on the right may help.]

