MATH 6: HANDOUT 12

GEOMETRIC SEQUENCES

A sequence of numbers is a geometric sequence or geometric progression if if the next number in the sequence is the current number times a fixed constant called the common ratio or q.
Example: The sequence $6,12,24,48, \ldots$ is a geometric sequence because the next number is obtained from the previous by multiplication by $q=2$.

We can also find the n-th term if we know the 1 st term and q.
Example: What is a_{10} in the example above?

$$
\begin{aligned}
& a_{1}=6 \\
& a_{2}=a_{1} q=6 \cdot 2=12 \\
& a_{3}=a_{2} q=\left(a_{1} q\right) q=a_{1} q^{2}=6 \cdot 2^{2}=24
\end{aligned}
$$

The pattern is:

$$
\begin{aligned}
a_{n} & =a_{1} q^{n-1} \\
a_{10} & =a_{1} q^{9}=6 \cdot 2^{9}=6 \cdot 512=3072
\end{aligned}
$$

Properties of a Geometric Sequence. Any term is the geometric mean of its neighbors:

$$
a_{n}=\sqrt{a_{n-1} \cdot a_{n+1}}
$$

Proof:

$$
\begin{aligned}
a_{n} & =a_{n-1} q \\
a_{n} & =a_{n+1} / q
\end{aligned}
$$

Multipluying these two equalities gives us:

$$
a_{n}^{2}=a_{n-1} \cdot a_{n+1}
$$

from where we can get what we need.
Sum of a Geometric Sequence. Let's try to sum $1+2+4+\cdots+64$. For purposes of working with this sum, let it be called S, i.e. $S=1+2+4+\cdots+64$. Then I can notice that $2 S=2+4+8+\cdots+128$; subtract the original sum to get $2 S-S=128-1$ (everything else cancels out). Thus $S=127$. What did we do here? We multiplied by 2 , which lined up the terms of the sequence to the next term over. In the geometric sequence $1,2, \ldots, 64$, the common ratio is $q=2$.

Let's do this in general. Let a_{1}, \ldots, a_{n} be a geometric sequence with common ratio q.

$$
S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\frac{a_{1}\left(1-q^{n}\right)}{1-q}
$$

Proof: To prove this, we write the sum and multiply it by q:

$$
\begin{aligned}
S_{n} & =a_{1}+a_{2}+\cdots+a_{n} \\
q S_{n} & =q a_{1}+q a_{2}+\cdots+q a_{n}
\end{aligned}
$$

Now notice that $q a_{1}=a_{2}, \ldots q a_{2}=a_{3}, \ldots, q a_{n}=a_{n+1}$, etc, so we have:

$$
\begin{aligned}
S_{n} & =a_{1}+a_{2}+\cdots+a_{n} \\
q S_{n} & =a_{2}+a_{3}+\cdots+a_{n+1}
\end{aligned}
$$

Subtracting the second equality from the first, and canceling out the terms, we get:

$$
\begin{aligned}
& S_{n}-q S_{n}=\left(a_{1}-a_{n+1}\right), \text { or } \\
& S_{n}(1-q)=\left(a_{1}-a_{1} q^{n}\right) \\
& S_{n}(1-q)=a_{1}\left(1-q^{n}\right)
\end{aligned}
$$

from which we get the formula above.

Homework problems

1. Write out the first four terms of each of the following geometric sequences, given the first term b_{1} and common ration q.
(a) $b_{1}=1$ and $q=3$
(b) $b_{1}=1$ and $q=\frac{1}{2}$
(c) $b_{1}=-10$ and $q=\frac{1}{2}$
(d) $b_{1}=27$ and $q=-\frac{1}{3}$
2. What are the first two terms of the geometric progressions $a_{1}, a_{2}, 24,36,54, \ldots$?
3. Find the common ratio of the geometric progressions $1 / 2,-1 / 2,1 / 2, \ldots$ What is a_{100} ?
4. Calculate:

$$
S=\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\cdots+\frac{1}{2^{10}}
$$

5. Calculate:

$$
S=1-2+2^{2}-2^{3}+2^{4}-2^{5}+\cdots-2^{15}
$$

6. Calculate

$$
S=1+3+9+27+81+243
$$

first via the method of multiplying by the common ratio, then by plugging into the formula directly. Which method do you like better?
7. Calculate

$$
S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243} .
$$

8. A geometric progression has 99 terms, the first term is 12 and the last term is 48 . What is the 50 th term?
9. Simplify the following expression

$$
1+x+x^{2}+x^{3}+\ldots+x^{100}
$$

10. If we put one grain of wheat on the first square of a chessboard, two on the second, then four, eight, ..., approximately how many grains of wheat will there be? (you can use an approximation $2^{10}=1024 \approx 10^{3}$).

Can you estimate the total volume of all this wheat and compare with the annual wheat harvest of the US, which is about 2 billion bushels. (A grain of wheat is about $10 \mathrm{~mm}^{3}$; a bushel is about 35 liters, or 0.035 m^{3})

