Homework 23.
Below are the homework problems. To solve these you have to use the equation of state of the ideal gas:

$$
P V=n R T
$$

1. Find the mass of oxygen in the 10 liter cylinder if at $\mathrm{T}=13^{\circ} \mathrm{C}$ the pressure $\mathrm{P}=9 \times 10^{6} \mathrm{~Pa}$.
2. How many molecules move out of the room if the temperature inside is increased from $\mathrm{T}=15^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ if the room volume is $120 \mathrm{~m}^{3}$ and atmospheric pressure is $10^{5} \mathrm{~Pa}$ ? Assume that the air is an ideal gas with average molar mass of $29 \mathrm{~g} / \mathrm{mol}$.

There are no sealed living rooms - the air molecules can travel inside and outside. To solve the problem, you have to answer the question: why more molecules move out of the room than into the room as we increase the room temperature.
3. (More difficult). Two identical cylinders are connected with a tube. The volume of the tube is very small. The cylinders are filled with gas at a temperature T. How many times does the pressure in the system change if we will heat one of the cylinders to temperature $\mathrm{T}_{1}$ and maintain the other at the temperature T ?

First step to solving this problem is answering the question: will the pressure be the same in the cylinders after we increase the temperature of one of them?

