Homework due March 7, 2021.

Problems.

1. Given circle C and its image C^{\prime} of find the inversion circle, S , which transforms one into another. Consider three cases:
a. circles C and C^{\prime} are crossing, i.e. have two common points
b. circles C and C^{\prime} are touching, i.e. have one common point
c. circles C and C^{\prime} have no common points
2. Find the distance between two parallel straight lines that are images of the two circles with the radii r_{1} and r_{2}, which are tangent at the center O of the inversion circle S with radius R.
3. Express the similarity coefficient between circle L and its image L^{\prime} through radius of the inversion circle R and length of the tangent, $|O T|$. What happens if $|O T|=R$?
4. Consider inversion with respect to circle S centered at the origin, $(0,0)$. Image of point $P(x, y)$ is point $P^{\prime}\left(x^{\prime}, y^{\prime}\right)$.
Prove that the transformation of coordinates is (see figure),

$$
\begin{aligned}
& x^{\prime}=x \frac{R^{2}}{x^{2}+y^{2}} \\
& y^{\prime}=y \frac{R^{2}}{x^{2}+y^{2}}
\end{aligned}
$$

5. Prove that given any two circles, there is some third circle such that the first two circles are images of each other under inversion through the third circle.
6. Let $g(n)$ be a function that counts multiples of 2: for all $n, g(n)$ is the number of even positive integers in [0,n] (including 0 and n). Let $h(n)$ be defined as $h(n)=n-g(n)$. Construct a function f such that $f(0)=1$ and for all positive integers n, we have $h(n+1)=h(n)+1$.
7. What would happen in problem 6 if $g(n)$ counts both multiples of 2 and multiples of 3 in $[0, n]$? Can you tell what the range of f will be?

