Homework for November 22, 2020

Geometry.

Review the previous classwork notes. Solve the following problems, including problems from the last homework (if you have not solved them yet).

Problems.

- 1. Using the Ptolemy's theorem, prove the following:
 - a. Given an equilateral triangle $\triangle ABC$ inscribed in a circle and a point Q on the circle, the distance from point Q to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.
 - b. In a regular pentagon, the ratio of the length of a diagonal to the length of a side is the golden ratio, ϕ .
- 2. Given a circle of radius *R*, find the length of the sagitta (Latin for arrow) of the arc *AB*, which is the perpendicular distance *CD* from the arc's midpoint (*C*) to the chord *AB* across it.
- 3. Prove the Viviani's theorem:

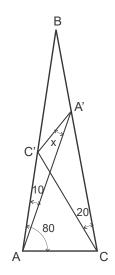
The sum of distances of a point P inside an equilateral triangle or on one of its sides, from the sides, equals the length of its altitude. Or, alternately,

From a point *P* inside (or on a side) of an equilateral triangle *ABC* drop perpendiculars PP_a , PP_b , PP_c to its sides. The sum $|PP_a| + |PP_b| + |PP_c|$ is independent of *P* and is equal to any of the triangle's altitudes.

- 4. *In an isosceles triangle *ABC* with the angles at the base, $\angle BAC = \angle BCA = 80^\circ$, two Cevians *CC'* and *AA'* are drawn at an angles $\angle BCC' = 20^\circ$ and $\angle BAA' = 10^\circ$ to the sides, *CB* and *AB*, respectively (see Figure). Find the angle $\angle AA'C' = x$ between the Cevian *AA'* and the segment *A'C'* connecting the endpoints of these two Cevians.
- 5. ** Prove the following Ptolemy's inequality. Given a quadrilateral *ABCD*,

$$|AC| \cdot |BD| \le |AB| \cdot |CD| + |BC| \cdot |AD|$$

Where the equality occurs if *ABCD* is inscribable in a circle (try



using the triangle inequality).

Algebra.

Review the last classwork handout. Review and solve the classwork exercises which were not solved and unsolved problems from the previous homeworks.

- 1. Prove the following properties of the Cartesian product,
 - a. $A \times (B \cap C) = (A \times B) \cap (A \times C)$
 - b. $A \times (B \cup C) = (A \times B) \cup (A \times C)$
 - c. $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$
- 2. Find the Cartesian product, $A \times B$, of the following sets,
 - a. $A = \{a, b\}, B = \{\uparrow, \downarrow\}$
 - b. $A = \{June, July, August\}, B = \{1, 15\}$
 - c. $A = \emptyset, B = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- 3. Describe the set of points determined by the Cartesian product, $A \times B$, of the following sets (illustrate schematically on a graph),
 - a. A = [0,1], B = [0,1] (two segments from 0 to 1)
 - b. $A = [-1,1], B = (-\infty, \infty)$
 - c. $A = (-\infty, 0], B = [0, \infty)$
 - d. $A = (-\infty, \infty), B = (-\infty, \infty)$
 - e. $A = [0,1), B = \mathbb{Z}$ (set of all integers)
- 4. Propose 3 meaningful examples of a Cartesian product of two sets.
- 5. $n_A = |A|$ is the number of elements in a set *A*.
 - a. What is the number of elements in a set $A \times A$
 - b. What is the number of elements in a set $A \times (A \times A)$
- 6. Find the following sum.

$$\left(2+\frac{1}{2}\right)^2 + \left(4+\frac{1}{4}\right)^2 + \dots + \left(2^n + \frac{1}{2^n}\right)^2$$

- 7. Find the following sum,
 - a. $1 + 2 \cdot 3 + 3 \cdot 7 + \dots + n \cdot (2^n 1)$ b. $1 \cdot 3 + 3 \cdot 9 + 5 \cdot 27 + \dots + (2n - 1) \cdot 3^n$