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Algebra.  

Elements of Set Theory.  

Definition. We will define a set to be a group of objects (not necessarily 

ordered) with no duplicates.  

Note that the objects in the sets can themselves be sets. We can describe a set 

by defining some property of objects in it. For example,  

1. the set containing the positive integers from 1 to 5 is {𝟏, 𝟐, 𝟑, 𝟒, 𝟓}  
2. the set of all natural numbers, which we denote ℕ  
3. the set of all integer numbers, which we denote ℤ  

4. the set of all rational numbers, 
𝒎

𝒏
, ({𝒎, 𝒏} ∈ ℤ ∧ 𝒏 ≠ 𝟎), which we 

denote ℚ 
5. the set of all real numbers, which we denote ℝ 
6. the set of all irrational numbers, which we denote 𝐃 

If a set has finite number of objects, it is said to be finite. Otherwise, it is 

infinite. The number of elements, 𝒏, in a finite set 𝑨, is denoted |𝑨| = 𝒏. If 

elements in the set can be counted by assigning a natural number to each 

element, the set is called countable. The set that is not countable is called 

uncountable.  

Exercise. Give examples of infinite, countable, uncountable sets. 

If we wish to describe an infinite set, such as the set of even positive integers, 

we use what is called “set builder notation”.  

𝑀 = {𝑥 ∶  (𝑥 ∈  ℤ)  ∧ (𝑥 >  0)  ∧  (𝑥/2 ∈  ℤ)}  

This is read verbally as “the set of all 𝑥 such that 𝑥 is integer and greater than 
0 and 𝑥 divided by 2 is also integer”.  Another example,   

𝐹 =  {𝑛2  −  4 : (𝑛 ∈  ℤ) ∧ ( 0 ≤  𝑛 ≤  19)}  



“𝐹 is the set of all numbers of the form 𝑛2  −  4, such that 𝑛 is a whole number 
in the range from 0 to 19 inclusive”, where the colon “:” is read “such that”.   

If 𝑥 is a member of a set 𝑀, we will use notation 𝑥 ∈ 𝑀, if 𝑦 is not a member of 
a set 𝑀 we will write 𝑦 ∉ 𝑀. For example statement “0 ≤ 𝑥 ≤ 1 ” can be 
written as 𝑥 ∈ [0,1].  Another example: If 𝑥 > 3 or 𝑥 < 5, so 𝑥 ∈ (−∞, 5] ∩
[3,+∞). 

Set builder notation can also be written like this: 

𝑀 = {𝑥 ∈  ℤ ∶ (𝒙 > 𝟎) ∧ (𝒙 < 𝟐)} 

And also a vertical bar is often used instead of the colon, like this: 

𝑀 = {𝑥 ∈  ℤ |(𝑥 > 0) ∧ (𝑥 < 2)} 

In some applications, you may want to modify the x that goes in the set. This is 
not generally common in theoretical mathematics, but finds interesting 
applications in programming for example. In any case, if this helps you 
understand set builder notation better, you can also think of it like this, in 
three parts: 

𝑀 = {𝑓(𝑥)|𝑥 ∈  𝐾|𝑃(𝑥)} 

Which just means f(x) for x in some domain set K if the logical property P(x) 
holds true. For the sake of common mathematical notation, though, I will stick 
to writing (𝑥 ∈  𝐾) ∧ 𝑃(𝑥) for the domain and property parts of the notation. 

The algebra of sets.  

An algebraic structure (algebra) is formed by a set of objects supplemented by 
a set of operations, which act on the elements of this set and obey certain 
algebraic laws. Typical example of an algebra are binary operations of 
addition and multiplication on a set of real, or integer numbers, which 
combine two elements to produce a third. These operations obey certain laws, 
such as commutative, associative, and distributive. Another example would be 
a set of all possible rotations of a solid body, with multiplication defined as 
combination of two consecutive rotations (Lie algebra, it is associative, but 
not commutative). The algebra of sets is an algebraic structure consisting of 
operations on sets (the elements of the set of sets).  



Definition. An identity element with respect to a binary operation on a set is a 
set which leaves other elements unchanged when combined with them. An 
identity with respect to binary addition is called an additive identity (often 
denoted as 0) and an identity in the case of multiplication a multiplicative 
identity (often denoted as 1).   

Definition. The empty set (or null set) is the set which contains no objects and 
is denoted {}, or by the symbol . 

Definition. The universal set 𝐼 (the Universe of discourse) is the set which 
contains all objects of any nature, and of which all other sets are subsets.  

In the algebra of sets, the empty set and the universal set play roles of the 
additive and the multiplicative identity, respectively. 

Definition. The set 𝐴 is said to be a subset of the set 𝐵 if there is no element in 
𝐴 that is not also in 𝐵. It is denoted by 𝐴 ⊂ 𝐵, or 𝐵 ⊃ 𝐴.  

Exercise. Let 𝐴 be a finite set, with the number of elements |𝐴|  =  𝑛. How 

many different subsets does 𝐴 have (including the empty subset and 𝐴 itself)? 

Comparing sets.  

If both statement 𝐴  𝐵 and 𝐵 𝐴 hold, then sets 𝐴 and 𝐵 are equal, 𝐴 = 𝐵. In 
this case sets 𝐴 and 𝐵 contain exactly the same elements. The relation 𝐴  𝐵 
has some similarities with the 𝑎 ≤  𝑏 relation between the real numbers. In 
particular, the following set comparison rules hold: 

1. 𝐴  𝐴 
2. If 𝐴  𝐵 and 𝐵  𝐴 then 𝐴 = 𝐵 
3. If 𝐴  𝐵 and 𝐵  𝐶 then 𝐵  𝐶 
4. ∅  𝐴 for any set 𝐴 
5. 𝐴  I for any set 𝐴 

The difference between the order relation 𝐴  𝐵 between sets and the ≤ 
relation between real numbers is that for numbers either 𝑎 ≤  𝑏, or 𝑎 ≥  𝑏 
always holds, while this is not necessarily the case for sets order relation.  

Definition. The union of two sets 𝐴 and 𝐵 is the set of elements, which are in 𝐴 
or in 𝐵 or in both. It is denoted by 𝐴 ∪  𝐵 and is read ‘𝐴 union 𝐵’.  



Definition. The intersection of two sets 𝐴 and 𝐵 is the set of elements, which 
are in 𝐴 and in 𝐵. It is denoted by 𝐴 ∩ 𝐵 and is read ‘𝐴 union 𝐵’.  

We can associate the union with the “logical sum” of sets 𝐴 and 𝐵,  

𝐴 ∪ 𝐵 = 𝐴 + 𝐵, 

and the intersection with the “logical product”, 

𝐴 ∩ 𝐵 =  𝐴 ∙ 𝐵. 

Using these definitions, it can be easily verified that these operations satisfy 
the following rules. 

6. 𝐴 + 𝐵 = 𝐵 + 𝐴 
7. 𝐴 ∙ 𝐵 = 𝐵 ∙ 𝐴 
8. 𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝐶 
9. 𝐴 ∙ (𝐵 ∙ 𝐶) = (𝐴 ∙ 𝐵) ∙ 𝐶 
10. 𝐴 + 𝐴 = 𝐴 
11. 𝐴 ∙ 𝐴 = 𝐴 
12. 𝐴 ∙ (𝐵 + 𝐶) = (𝐴 ∙ 𝐵 + 𝐴 ∙ 𝐶) 
13. 𝐴 + (𝐵 ∙ 𝐶) = (𝐴 + 𝐵) ∙ (𝐴 + 𝐶) 
14. 𝐴 + = 𝐴 
15. 𝐴 ∙ 𝐼 = 𝐴 
16. 𝐴 + I = 𝐼 
17. 𝐴 ∙ =  
18. 𝐴  𝐵 is equivalent to either of the two, 𝐴 + 𝐵 = 𝐵, or 𝐴 ∙ 𝐵 = 𝐴 

Definition. The complement of set 𝐴 in 𝐼 is the set 𝐴′, which consists of all 
objects in 𝐼 which are not in 𝐴.  

The operation of obtaining a complement 𝐴′ has no analogs in the algebra of 
numbers, and possesses the following properties. 

19. 𝐴 + 𝐴′ = 𝐼 
20. 𝐴 ∙ A′ =   
21. ′ =  𝐼 
22. 𝐼′ =  
23. 𝐴′′ = 𝐴 
24. (𝐴  𝐵)

 
⇔ (𝐵′ 𝐴′) 



25. (𝐴 + 𝐵)′ =  𝐴′ ∙ 𝐵′ 
26. (𝐴 ∙ 𝐵)′ =  𝐴′ + 𝐵′ 

These 26 laws of the algebra of sets possess an interesting duality symmetry: 
if we interchange   and , + and ∙, and  and 𝐼, the same set of rules is 
obtained. Each of the 26 relations transforms in some other of these relations.  

Exercise. Verify the above stated duality.  

It is also remarkable from the point of view of the axiomatic constructions 
that all the above 26 laws, as well as all other theorems of set algebra can be 
deduced from the following three equation adopted as axioms, much like the 
Euclidian geometry.  

1. 𝐴 + 𝐵 = 𝐵 + 𝐴 
2. 𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝐶 
3. (𝐴′ + 𝐵′)′ + (𝐴′ + 𝐵)′ = 𝐴 

The operations 𝐴 ∙ 𝐵 and 𝐴  𝐵 are then defined by: 𝐴 ∙ 𝐵 = (𝐴′ + 𝐵′)′ and 
𝐴  𝐵 means that 𝐴 + 𝐵 = 𝐵. The third relation can be rewritten as: 
 𝐴 ∙ 𝐵 + 𝐴 ∙ 𝐵′ = 𝐴 
Or, after deducing distributivity, 𝐴 ∙ (𝐵 + 𝐵′) = 𝐴 

Exercise. Verify that all 26 rules of the set algebra can be obtained from the 
three axioms stated above. 

Example. An algebraic structure satisfying all laws of the algebra of sets is 
provided by a set of eight numbers, {1,2,3,5,6,10,15,30}, where addition is 
identified with obtaining the least common multiple, multiplication with the 
greatest common divisor, 𝑚  𝑛 to mean “𝑚 is a factor of 𝑛”, and 𝑛′ = 30/𝑛,  

• 𝑚 + 𝑛 ≡ 𝐿𝐶𝑀(𝑛,𝑚)  
• 𝑚 ∙ 𝑛 ≡ 𝐺𝐶𝐷(𝑛,𝑚) 
• 𝑚  𝑛 ≡ (𝑛 = 0𝑚𝑜𝑑(𝑚)) 
• 𝑛′ ≡ 30/𝑛. 

Exercise. Verify that thus obtained algebra satisfies all rules of set algebra.  

We observe that laws of the algebra of sets look similar to the laws of 
propositional logic and predicate calculus, if we identify 



𝐴 ∩ 𝐵 = 𝐴 ∙ 𝐵, with conjunction (AND), A∧B  

𝐴 ∪ 𝐵 = 𝐴 + 𝐵, with disjunction (OR), A∨B 

𝐴′ with negation (NOT), ~𝐴 

𝐴 ⊃ 𝐵 with 𝐴𝐵, 𝐴 ⊂ 𝐵 with 𝐴𝐵.  

This is because any subset of a universal set can be defined using a predicate.  

  



A B

C

Definition. For two sets 𝐴, 𝐵, their difference 𝐴 − 𝐵 (sometimes notation 𝐴\𝐵 

is used instead of 𝐴 − 𝐵) is defined by,  

𝐴 − 𝐵 =  {𝑥: (𝑥 ∈ 𝐴) ∧ (𝑥 ∉ 𝐵)} = 𝐴⋂𝐵′ 

The following properties can be shown to hold (consider Venn 

diagrams), 

𝐴 − (𝐵⋃𝐶) =  (𝐴 − 𝐵) − 𝐶, but in general, 𝐴 − (𝐵 − 𝐶) ≠ (𝐴⋃𝐶) − 𝐵 

Because of this, although subtraction seems like an intuitive 

opposite of addition, it can’t always be used to cleanly cancel out 

addition. 

Exercise. Give an example of sets A, B where 𝐴 + (𝐵 − 𝐵) ≠ (𝐴 + 𝐵) − 𝐵  

Definition. The symmetric difference of two sets is,  

𝐴 △ 𝐵 = (𝐴 − 𝐵)⋃(𝐵 − 𝐴) 

This operation is commutative and associative, 

𝐴 △ 𝐵 = 𝐵 △ 𝐴 

(𝐴 △ 𝐵) △ 𝐶 = 𝐴 △ (𝐵 △ 𝐶) 

The symmetric difference behaves uncannily like addition in important ways. 

It’s the symmetric difference that’s used to put a structure on sets that more 

closely resembles the algebra on numbers, i.e. arithmetic. All the same 

commutativity, distributivity, and identity laws hold for symmetric difference 

as addition and intersection as multiplication. But, with symmetric difference 

as addition, there is an exact opposite of the addition operation, so subtraction 

is possible in general equations. Can you describe what this subtraction 

operation would be? 

  

A B

A B



Definition. For a set 𝐴, the characteristic function 𝜒𝐴 is defined as follows (the 

inputs are elements x), 

𝜒𝐴(𝑥) = {
1, 𝑖𝑓 𝑥 ∈ 𝐴
0, 𝑖𝑓 𝑥 ∉ 𝐴

 

Exercise. Show that  𝜒𝐴 has following properties 

𝜒𝐴 = 1 − 𝜒𝐴′ 

𝜒𝐴⋂𝐵 = 𝜒𝐴 𝜒𝐵 

𝜒𝐴⋃𝐵 =  1 − 𝜒𝐴′⋂𝐵′ = 1 − 𝜒𝐴′ 𝜒𝐵′ = 1 − (1 − 𝜒𝐴)(1 − 𝜒𝐵) = 𝜒𝐴 + 𝜒𝐵 − 𝜒𝐴𝜒𝐵 

Exercise. Write a formula for 𝜒𝐴⋃𝐵⋃𝐶; 𝜒𝐴⋃𝐵⋃𝐶⋃𝐷 .  

  



 

Solutions to some homework problems. 

1. Problem. Write the first few terms in the following sequence (𝑛 ≥ 1),  

𝑛 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠

{
 

 
1

1+
1

1+
1

1+⋯                           

                  …+
1

1+𝑥
 

= 𝑓𝑛 

a. Try guessing the general formula of this fraction for any 𝑛. 

b. Using mathematical induction, try proving the formula you 
guessed. 

Solution. 𝑛 = 1: 𝑓1 =
1

1+𝑥
; 𝑛 = 2: 𝑓2 =

1

1+
1

1+𝑥

=
1+𝑥

2+𝑥
; 𝑛 = 3, 𝑓3 =

1

1+
1

1+
1

1+𝑥

=

2+𝑥

3+2𝑥
; 𝑛 = 4, 𝑓4 =

1

1+
1

1+
1

1+
1

1+𝑥

=
3+2𝑥

5+3𝑥
; 𝑓5 =

5+3𝑥

8+5𝑥
; … .  

From the definition, we can write the recurrence, 𝑓𝑛+1 =
1

1+𝑓𝑛
. We note, that 

if 𝑓𝑛 =
𝑎𝑛+𝑏𝑛𝑥

𝑐𝑛+𝑑𝑛𝑥
 , then 𝑓𝑛+1 =

𝑐𝑛+𝑑𝑛𝑥

(𝑎𝑛+𝑐𝑛)+(𝑏𝑛+𝑑𝑛)𝑥
. Hence, in each next term, 𝑓𝑛+1, 

in the sequence, the numerator is equal to the denominator of the previous 
term, 𝑓𝑛, while the numbers in the denominator are the sums of the 
corresponding numbers in the numerator and the denominator of the 
previous term, 𝑓𝑛, thus forming the Fibonacci sequence, {𝐹𝑛} =
{1,1,2,3,5,8,13,… }. We can thus guess, 

a. 𝑛 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠: 𝑓1 =
1

1+𝑥
, 𝑓𝑛 =

𝐹𝑛+𝐹𝑛−1𝑥

𝐹𝑛+1+𝐹𝑛𝑥
, 𝑛 > 1 

b. Base: 𝑓2 =
1+𝑥

1+2𝑥
 

Induction: Using the recurrence implied in the definition,  

𝑓𝑛+1 =
1

1+𝑓𝑛
=

1

1+
𝐹𝑛+𝐹𝑛−1𝑥

𝐹𝑛+1+𝐹𝑛𝑥

=
𝐹𝑛+1+𝐹𝑛𝑥

𝐹𝑛+1+𝐹𝑛+𝐹𝑛𝑥+𝐹𝑛−1𝑥
=

𝐹𝑛+1+𝐹𝑛𝑥

𝐹𝑛+2+𝐹𝑛+1𝑥
. 

2. Problem. Can you prove that, 



a.  
3+√17

2
= 3 +

2

3+
2

3+
2

3+⋯

 ?  

b. 1 = 3 −
2

3−
2

3−
2

3−⋯

 ?  

c.  
4

2+
4

2+
4

2+⋯

= 1 +
1

4+
1

4+
1

4+⋯

 ?  

Find these numbers? 

Solution. Consider a general continued fraction,  

𝑥 = 𝑎 +
𝑏

𝑎 +
𝑏

𝑎 +
𝑏

𝑎 +⋯

 

If a number exists, which is equal to the above infinite continued 

fraction, then it must satisfy the equation, 𝑥 = 𝑎 +
𝑏

𝑥

 
⇔𝑥2 − 𝑎𝑥 − 𝑏 = 0

 
⇔𝑥 =

𝑎

2
±√(

𝑎

2
)
2
+ 𝑏. If 𝑎 and 𝑏 are positive, then 𝑥 must also be 

positive, so 𝑥 =
𝑎

2
+√(

𝑎

2
)
2
+ 𝑏. 

a. Following the above argument with 𝑎 = 3, 𝑏 = 2, we obtain, 𝑥 =
3

2
+

√(
3

2
)
2
+ 2 =

3+√17

2
 

b. In this case, 𝑎 = 3, but 𝑏 = −2 is negative. Applying the above 

considerations naively, we obtain, 𝑥 = 3 −
2

𝑥

 
⇔𝑥2 − 3𝑥 + 2 = 0

 
⇔ (𝑥 − 1)(𝑥 − 2) = 0, i.e. there are two equally “legitimate” 

answers, 𝑥 = 1, or 𝑥 = 2. What this means, is that assumption that 

there exist unique number encoded by the given infinite continued 

fraction is wrong: there exist no such number! In fact, this can also be 

understood by looking at finite truncations approximating this 

continued fraction. If the continued fraction is truncated after 

subtracting 2 and before division by 3, then it is equal to 1, 



3 −
2

3−2
= 1, 3 −

2

3−
2

3−2

= 1, … . 

If, on the other hand, the truncation is after division by 3 and before 

subtracting 2, then we obtain a  sequence of numbers approaching 2, 

3 −
2

3
= 2

1

3
 , 3 −

2

3−
2

3

= 2
1

7
, 3 −

2

3−
2

3−
2
3

= 2
1

15
, … . 

c. Denote 

𝑥 =
4

2 +
4

2 +
4

2 +⋯

=
4

2 + 𝑥
 

Then, 𝑥2 + 2𝑥 − 4 = 0
 
⇔𝑥 = −1 ±

√5

2
, and 𝑥 > 0.  Hence, 𝑥 = −1 +

√5

2
.  

Similarly, denote 

𝑦 =
1

4 +
1

4 +
1

4 +⋯

=
1

4 + 𝑦
 

Then, 𝑦2 + 4𝑦 − 1 = 0
 
⇔𝑦 = −2 ±

√5

2
, and 𝑦 > 0.  Hence, 𝑦 = −2 +

√5

2
, and 1 + 𝑦 = −1 +

√5

2
= 𝑥.  

 

 


