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Geometry.  

“Direct” and “Inverse” Theorems.  

Each theorem consists of premise and conclusion. Premise is a proposition 

supporting, or helping to support a conclusion.  

If we have two propositions, 𝐴 (premise) and 𝐵 (conclusion), then we can 

make a proposition 𝐴 
 

⇒  𝐵 (If 𝐴 is truth, then 𝐵 is also truth, 𝐴 is sufficient for 

𝐵, or 𝐵 follows from 𝐴, or 𝐵 is necessary for 𝐴). This statement is sometimes 

called the “direct” theorem and has to be proven.  

Or, we can construct a proposition 𝐴 
 

⇐  𝐵 (𝐴 is truth only if 𝐵 is also truth, 𝐴 

is necessary for 𝐵, or 𝐴 follows from 𝐵, 𝐵 is sufficient for 𝐴), which is 

sometimes called the “inverse” theorem, and also has to be proven.  

While some theorems offer only necessary or only sufficient condition, many 

theorems establish equivalence of two propositions, 𝐴
 

⇔ 𝐵. 

Ceva’s Theorem.  

Definition. Cevian is a line segment in a triangle, which joins a vertex with a 
point on the opposite side. 

Theorem (Ceva). In a triangle 𝐴𝐵C, three 

cevians 𝐴𝐴′, 𝐵𝐵′ and 𝐶𝐶′ intersect at a single 

point O if and only if  

|𝐴𝐵′|

|𝐵′𝐶|
∙

|𝐶𝐴′|

|𝐴′𝐵|
∙

|𝐵𝐶′|

|𝐶′𝐴|
= 1 

This theorem was published by Giovanni 
Ceva in his 1678 work De lineis rectis.  

Direct Ceva’s theorem. Geometrical proof.  



For the Ceva’s theorem the premise (A) is “Three Cevians in a triangle 𝐴𝐵𝐶, 

𝐴𝐴′, 𝐶𝐶′, 𝐵𝐵′, are concurrent”. The conclusion (B) is,  

|𝐴𝐶′|

|𝐶′𝐵|


|𝐵𝐴′|

|𝐴′𝐶|


|𝐶𝐵′|

|𝐵′𝐴|
= 1. The full statement of the “direct” theorem is 𝐴

 
⇒ 𝐵, 

i.e., 

If three cevians in a triangle 𝐴𝐵𝐶, 𝐴𝐴′, 𝐶𝐶′, 𝐵𝐵′, are concurrent, then 

|𝐴𝐶′|

|𝐶′𝐵|


|𝐵𝐴′|

|𝐴′𝐶|


|𝐶𝐵′|

|𝐵′𝐴|
= 1 is true. From 𝐴 follows 𝐵 (𝐴 

 

⇒ 𝐵). Again, premise in 

the “direct” theorem provides sufficient condition for the conclusion to be 

truth. Obviously, the conclusion 𝐵 is the necessary condition for the premise 𝐴 

to hold. 

Proof. Consider triangles 𝐴𝑂𝐵, 𝐵𝑂𝐶 and 𝐶𝑂𝐴. Denote their areas 𝑆𝐴𝑂𝐵 , 𝑆𝐵𝑂𝐶 , 

and 𝑆𝐶𝑂𝐴. The trick is to express the desired ratios of the lengths of the 6 

segments, |𝐴𝐵′|: |𝐵′𝐶|, |𝐶𝐴′|: |𝐴′𝐵|, |𝐵𝐶′|: |𝐶′𝐴|, in terms of the ratios of these 

areas. We note that some triangles share heights. Therefore,  

|𝐴𝐵′|

|𝐵′𝐶|
=

𝑆𝐴𝐵𝐵′

𝑆𝐵′𝐵𝐶
;  

|𝐴𝐵′|

|𝐵′𝐶|
=

𝑆𝐴𝑂𝐵′

𝑆𝐵′𝑂𝐶
, and so on. 

The above two equalities yield,  

|𝐴𝐵′|

|𝐵′𝐶|
=

𝑆𝐴𝐵𝐵′ − 𝑆𝐴𝑂𝐵′

𝑆𝐵′𝐵𝐶 − 𝑆𝐵′𝑂𝐶
=

𝑆𝐴𝑂𝐵

𝑆𝐵𝑂𝐶
 

Repeating this for the other ratios along the sides of the triangle we obtain,  

|𝐴𝐵′|

|𝐵′𝐶|
∙

|𝐶𝐴′|

|𝐴′𝐵|
∙

|𝐵𝐶′′|

|𝐶′𝐴|
=

𝑆𝐴𝑂𝐵

𝑆𝐵𝑂𝐶
∙

𝑆𝐴𝑂𝐶

𝑆𝐵𝑂𝐴
∙

𝑆𝐵𝑂𝐶

𝑆𝐶𝑂𝐴
= 1, 

which completes the proof.  
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“Inverse” Ceva’s theorem. Geometrical proof. 

Let us formulate the “inverse Ceva’s 

theorem”, the theorem where premise and 

conclusion switch places. 

If in a triangle 𝐴𝐵𝐶 three chevians divide 

sides in such a way that 

|𝐴𝐶′|

|𝐶′𝐵|


|𝐵𝐴′|

|𝐴′𝐶|


|𝐶𝐵′|

|𝐵′𝐴|
= 1  (1) 

holds, then they are concurrent. 𝐴 follows 

from 𝐵, 𝐵
 

⇒ 𝐴, or 𝐴
 

⇐ 𝐵, or, ~𝐴
 

⇒ ~𝐵, in other words if the three cevians of a 

triangle 𝐴𝐵𝐶 are not concurrent, then 
|𝐴𝐶′|

|𝐶′𝐵|


|𝐵𝐴′|

|𝐴′𝐶|


|𝐶𝐵′|

|𝐵′𝐴|
≠ 1. Three cevians 

being concurrent is a necessary condition for the relation  

|𝐴𝐶′|

|𝐶′𝐵|


|𝐵𝐴′|

|𝐴′𝐶|


|𝐶𝐵′|

|𝐵′𝐴|
= 1 to hold.  

Proof. An  inverse theorem can often be proven by contradiction (reductio ad 

absurdum), assuming that it does not hold and arriving at a contradiction with 

the already proven direct theorem. Assume that Eq. (1) holds, but one of the 

cevians, say BB’, does not pass through the intersection point, O, of the other 

two cevians. Let us then draw another cevian, 𝐵𝐵′′, which passes through O. 

By direct Ceva theorem we have then, 
|𝐶𝐵′′|

|𝐵′′𝐴|
=

|𝐶′𝐵|

|𝐴𝐶′|


|𝐴′𝐶|

|𝐵𝐴′|
=

|𝐶𝐵′|

|𝐵′𝐴|
, which means 

that 𝐵′ and 𝐵′′coincide, and therefore 𝐴𝐵′, must pass through 𝑂.  

Thus, in the case of Ceva’s theorem premise and conclusion (propositions 𝐴 

and 𝐵) are equivalent, (𝐴
 

⇔ 𝐵), and we can state the theorem as follows 

Theorem (Ceva). Three chevians in a triangle 𝐴𝐵𝐶, 𝐴𝐴′, 𝐶𝐶′, 𝐵𝐵′, are 

concurrent, if and only if 
|𝐴𝐶′|

|𝐶′𝐵|


|𝐵𝐴′|

|𝐴′𝐶|


|𝐶𝐵′|

|𝐵′𝐴|
= 1. 

  



“Inverse” Thales theorem. 

The “inverse” Thales theorem states  

If lengths of segments in the Figure on the 

left satisfy 
|𝐴𝐵′|

|𝐴𝐵|
=

|𝐴𝐶′|

|𝐴𝐶|
, then lines 𝐵𝐶 and 

𝐵𝐶′ are parallel. The proof is similar to the 

proof of Ceva’s “inverse” theorem, by 

assuming the opposite and obtaining a 

contradiction.  

If a theorem establishes the equivalence of two propositions 𝐴 and 𝐵, 𝐴
 

⇔ 𝐵, 

it is actually often the case that the proof of the necessary condition, 𝐴
 

⇐ 𝐵, i. 

e. the “inverse” theorem, is much simpler than the proof of the “direct” 

proposition, establishing the sufficiency, 𝐴 
 

⇒  𝐵 (assuming you prove the 

direct theorem first). It often could be achieved by using the sufficiency 

condition which has already been proven, and employing the method of 

“proof by contradiction”, or another similar construct.  

Examples of necessary and sufficient statements  

• Predicate 𝐴: “quadrilateral is a square” 

Predicate 𝐵: “all four its sides are equal”  

Which of the following holds: 𝐴 
 

⇒ 𝐵, 𝐴
 

⇐ 𝐵, 𝐴
 

⇔ 𝐵?  

Is 𝐴 necessary or sufficient condition for 𝐵? 

If a quadrilateral is not square its four sides are not equal. Truth or not? 

(𝐴
 

⇐ 𝐵 or ~𝐴
 

⇒ ~𝐵).  
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Similarity and homothety.  

Recap: Similar triangles 

Definition. Two triangles are similar if (i) angles of one of them are congruent 

to the respective angles of the other, or (ii) the sides of one of them are 

proportional to the corresponding  sides of the other.  

 

Arranging 2 similar triangles, so that the intercept theorem can be applied 

We can say that the ‘Similar Triangles Theorem’ is the fact that definitions (i) 

and (ii) are equivalent. 

The similar triangles theorem is closely related to the intercept (Thales) 

theorem. In fact Thales theorem is equivalent to the similar triangles theorem, 

i.e. either one could be used to prove the other. By matching identical angles 

one can always place 2 similar triangles in one another, obtaining the 

configuration in which the intercept theorem applies and vice versa the 

intercept theorem configuration always contains 2 similar triangles. In 

particular, a line parallel to any side of a given triangle cuts off a triangle 

similar to the given one.  

Similarity tests for triangles. 

• Two angles of one triangle are respectively congruent to the two angles 
of the other (AA similarity) 

• Two sides of one triangle are proportional to the corresponding  two 
sides of the other, and the angles between these sides are congruent 
(SAS similarity) 

• Three sides of one triangle are proportional to three sides of the other 
(SSS similarity) 

 

http://en.wikipedia.org/wiki/File:Intercept_theorem-_Triangles.svg


 

 

Application: property of the bisector. 

Theorem (property of the bisector). The bisector of any angle of a triangle 

divides the opposite side into parts proportional to the 

adjacent sides,  

|𝐴𝐶′|

|𝐶′𝐵|
=

|𝐴𝐶|

|𝐵𝐶|
, 

|𝐵𝐴′|

|𝐴′𝐶|
=

|𝐴𝐵|

|𝐴𝐶|
, 

|𝐶𝐵′|

|𝐵′𝐴|
=

|𝐵𝐶|

|𝐴𝐵|
 

Proof. Consider the bisector BB’. Draw line parallel to 

BB’ from the vertex C, which intercepts the extension of 

the side AB at a point D. Angles B’BC and BCD have 

parallel sides and therefore are congruent. Similarly are 

congruent ABB’ and CDB. Hence, triangle CBD is 

isosceles, and |BD| = |BC|. Now, applying the intercept 

theorem to the triangles ABB’ and ACD, we obtain 
|𝐶𝐵′|

|𝐵′𝐴|
=

|𝐵𝐷|

|𝐴𝐵|
=

|𝐵𝐶|

|𝐴𝐵|
. 

Theorem (property of the external 

bisector). The bisector of the 

exterior angle of a triangle 

intercepts the opposite side at a 

point (D in the Figure) such that 

the distances from this point to the 

vertices of the triangle belonging 

to the same line are proportional 

to the lateral sides of the triangle.   

Proof. Draw line parallel to AD 

from the vertex B, which intercepts 

the side AC at a point B’. Angles ABB’ and DAB have parallel sides and 
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therefore are congruent. Similarly, we see that angles AC’B and ABB’ are 

congruent, and, therefore, |AB’| = |AB|. Applying the intercept theorem, we 

obtain, 
|𝐷𝐵|

|𝐷𝐶|
=

|𝐴𝐵′|

|𝐴𝐶|
=

|𝐴𝐵|

|𝐴𝐶|
.  

 

 

  

Homothety.  

Definition. Two figures are homothetic 

with respect to a point 𝑂, if for each point 

𝐴 of one figure there is a corresponding 

point 𝐴′ belonging to the other figure, 

such that 𝐴′ lies on the line (𝑂𝐴) at a 

distance |𝑂𝐴′|  = 𝑘|𝑂𝐴| (𝑘 > 0) from 

point 𝑂, and vice versa, for each point 𝐴′ 

of the second figure there is a 

corresponding point 𝐴 belonging to the 

first figure, such that 𝐴’ lies on the line (𝑂𝐴) at a 

distance |𝑂𝐴|  =
1

𝑘
|𝑂𝐴′| from point 𝑂. Here the 

positive number 𝑘 is called the homothety (or 

similarity) coefficient. Homothetic figures are 

similar. The transformation of one figure (e.g. 

multilateral 𝐴𝐵𝐶𝐷𝐸𝐹) into the figure 

𝐴′𝐵′𝐶′𝐷′𝐸′𝐹′ is called homothety, or similarity transformation.  

Thales Theorem Corollary 1. The corresponding segments (e.g. sides) of the 

homothetic figures are parallel. 

Thales Theorem Corollary 2. The ratio of the corresponding elements (e.g. 

sides) of the homothetic figures equals 𝑘.  
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Thales Theorem Corollary 3. If two triangles  are homothetic to each other, 

then they are similar. 

This can be used to define the notion of similarity for figures other than 

triangles.  

Definition. Two figures are called similar if they can be obtained from one 

another by a homothety combined with a rigid motion of the plane (i.e. a 

motion preserving distances and angles, such as rotation, translation, or 

reflection).  

Exercise. What is the ratio of the areas of two similar figures? 

Generalized Pythagorean Theorem.  

Theorem. If three similar polygons, 𝑃, 𝑄 and 𝑅 with 

areas 𝑆𝑃, 𝑆𝑄 and 𝑆𝑅 are constructed on legs 𝑎, 𝑏 and 

hypotenuse 𝑐, respectively, of a right triangle, then,  

𝑆𝑃 + 𝑆𝑄 = 𝑆𝑅 

Proof. The areas of similar polygons on the sides of a 

right triangle satisfy 
𝑆𝑅

𝑆𝑃
=

𝑐2

𝑎2
 and 

𝑆𝑅

𝑆𝑄
=

𝑐2

𝑏2
, or, 

𝑆𝑃

𝑎2
=  

𝑆𝑄

𝑏2
=

𝑆𝑅

𝑐2
. Using the property of a proportion, we may then 

write, 
𝑆𝑃+𝑆𝑄

𝑎2+𝑏2
=  

𝑆𝑅

𝑐2
, wherefrom, using the Pythagorean theorem for the right 

triangle, 𝑎2 + 𝑏2 = 𝑐2, we immediately obtain 𝑆𝑃 + 𝑆𝑄 = 𝑆𝑅 .  

Exercise. Show that for any proportion,  

(
𝑎

𝑏
=

𝑐

𝑑
)

 
⇒ (

𝑎 + 𝑐

𝑏 + 𝑑
=

𝑎

𝑏
=

𝑐

𝑑
) ⋀ (

𝑎 − 𝑐

𝑏 − 𝑑
=

𝑎

𝑏
=

𝑐

𝑑
, 𝑖𝑓 𝑏 ≠ 𝑑) 


