Baseline review test. Algebra.

1. Open brackets and expand the following expressions
a. $(a+b)^{2}=$
b. $(a-b)^{2}=$
c. $(a+b)^{3}=$
d. $\quad(a-b)^{3}=$
2. Factor the following expressions
a. $\quad a^{2}-b^{2}=$
b. $a^{2}+b^{2}=$
c. $a^{3}-b^{3}=$
d. $a^{3}+b^{3}=$
e. $1+a+a^{2}+a^{3}=$
3. For a quadratic equation $a x^{2}+b x+c=0$ the roots are,
$x_{1,2}=$
and they have the following properties,
$x_{1}+x_{2}=$
$x_{1} \cdot x_{2}=$
4. Open brackets and expand the following expression

$$
(a+b)^{10}=
$$

5. What is the number of permutations of n objects?
6. How many ways is there to select k objects out of n if,
a. order does matter?
b. order does not matter?
7. Write the formula for a binomial coefficient

$$
{ }_{n} C_{k} \equiv C_{n}^{k} \equiv\binom{n}{k}=
$$

and explain its relation to combinatorics and certain counting problems.

Solutions to the baseline review test. Algebra.

1. Open brackets and expand the following expressions
a. $(a+b)^{2}=a^{2}+2 a b+b^{2}$
b. $(a-b)^{2}=a^{2}-2 a b+b^{2}$
c. $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
d. $(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$
2. Factor the following expressions
a. $\quad a^{2}-b^{2}=(a-b)(a+b)$
b. $a^{2}+b^{2}=\ldots$
c. $\quad a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
d. $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
e. $1+a+a^{2}+a^{3}=(1+a)\left(1+a^{2}\right)=\frac{1-a^{4}}{1-a}$

The last example was a particular case of a geometric progression, whose sum is one of the most important expressions in algebra,

$$
1+a+a^{2}+\cdots+a^{n}=\frac{1-a^{n+1}}{1-a}
$$

A simple heuristic way to prove this result is to multiply both sides with $(1-a)$ and then open the brackets,

$$
\left(1+a+a^{2}+\cdots+a^{n}\right)(1-a)=1-a+a-a^{2}+a^{2}-\cdots-a^{n}+a^{n}-a^{n+1}=1-a^{n+1}
$$

3. For a quadratic equation $a x^{2}+b x+c=0$ the roots are,
$x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
and they have the following properties,

$$
\begin{aligned}
& x_{1}+x_{2}=-\frac{b}{a} \\
& x_{1} \cdot x_{2}=\frac{c}{a}
\end{aligned}
$$

Although this can be checked by direct substitution of the formula for $x_{1,2}$, the easiest way to see this is by rewriting the equation in the reduced form and identifying it with the product of the two brackets,

$$
a x^{2}+b x+c=0 \Leftrightarrow x^{2}+\frac{b}{a} x+\frac{c}{a}=0 \Leftrightarrow\left(x-x_{1}\right)\left(x-x_{2}\right)=0 \Leftrightarrow x^{2}-\left(x_{1}+x_{2}\right) x+x_{1} x_{2}=0
$$

This is an example of the polynomial factorization, which we will be studying in significant detail this year.
4. Open brackets and expand the following expression,

$$
(a+b)^{n}=a^{n}+n a^{n-1} b+{ }_{n} C_{k} a^{n-2} b^{2}+{ }_{n} C_{k} a^{n-k} b^{k}+\cdots+{ }_{n} C_{1} a b^{n-1}+b^{n}
$$

This is the Newton's binomial formula, and we will be reviewing and re-deriving it later this year using the mathematical induction.
5. What is the number of permutations of n objects? Answer: n !

This is the number of ways that n different objects (or subjects) can be placed into n different places.

Examples:

- How many ways is there to sit n people in a movie theater with n numbered chairs?
- How many ways is there to hand out n different books to n students?
- How many ways is there to place n numbered billiard balls into n numbered spots?

There is n ways to select a place for the first object (subject), for each of these n choices there is $n-1$ choice to place the second one, so there are $n(n-1)$ in total different choices to fill the first two spots, and so on. Hence, there are $n!=n(n-1)(n-2) \ldots \cdot 2 \cdot 1$.
6. How many ways is there to select k objects out of n if,
a. order does matter? Answer: ${ }_{n} P_{k}=\frac{n!}{(n-k)!}$
b. order does not matter? Answer: ${ }_{n} C_{k}=\frac{n!}{k!(n-k)!}$

Math 8-9 placement test 2015

1. How many ways are there to choose a team captain and 6 team members out of 15 candidates?
2. If x_{1}, x_{2} are roots of the square equation $x^{2}+2 x-7$, what is $x_{1} x_{2} ? \frac{1}{x_{1}}+\frac{1}{x_{2}}$?
3. Simplify the following expression

$$
\frac{\left(a^{2}-b^{2}\right)^{3}}{(a-b)(a+b)^{2}}
$$

4. How many "words" can you form by permuting the letters of the word "letter"? (A "word" is any combination of letters, not necessarily meaningful)
5. Points $A=(0,0), B=(2,0)$, and C on the coordinate plane form an equilateral triangle. What are the coordinates of point C ?
6. Factor $a^{4}-b^{4}$.
7. Corners of a square with the side a are cut off so that a regular octagon is obtained. Find the area of this octagon.
8. Solve the inequality

$$
\frac{x+5}{x^{2}-2 x-3}>0
$$

9. If we write the polynomial $(x+2)^{10}$ in the usual form $x^{10}+a_{1} x^{9}+a_{2} x^{8}+\ldots$, what would be the coefficient of x^{6} ?
10. Find all integer numbers which give remainder 2 upon division by 7 and remainder 5 upon division by 13.
11. Given triangle $A B C$, explain how to construct (using ruler and compass) a point which is at equal distance from points A, B, and C.

Math 8-9 placement test 2015: solutions to selected problems

(1) $15 \times C_{14}^{6}=15 \cdot \frac{14!}{6!\cdot 8!}=\frac{15 \cdot 44 \cdot 13 \cdot 12 \cdot 11 \cdot+0 \cdot 9^{2}}{8 \cdot 5 \cdot 5 \cdot 2 \cdot 22}$ $=15.7 .13 .11 .3=45045$
(2)

$$
\begin{array}{ll}
x_{1}+x_{2}=-2 & \frac{x_{1}+x_{2}}{x_{1}+x_{2}}=\frac{1}{x_{1}}+\frac{1}{x_{2}}=\frac{-2}{-7}=\frac{2}{7} \\
x_{1} \cdot x_{2}=-7 &
\end{array}
$$

(3)

$$
\frac{(a-b)^{3}(a+6)^{3}}{(a-b)(a+b)^{2}}=(a-6)^{2}(a+b)
$$

(4) letter $\frac{6!}{2!\cdot 2!}=\frac{120.6}{2 \cdot 2}=60.3=180$
(5)
 $c=(1, \sqrt{3})$ or $(1,-\sqrt{3})$
(6) $a^{4}-b^{4}=\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)=(a-b)(a+b)\left(a^{2}+b^{2}\right)$
(7)

$=a^{2}-\frac{a^{2}}{2}(2-\sqrt{2})^{2}=a^{2}-a^{2}[2-2 \sqrt{2}+1]=a^{2}[2 \sqrt{2}-2]$
$A_{\text {rea }}=2(\sqrt{2}-1) a^{2}$
(8) $\frac{x+5}{x^{2}-2 x-3}>0 \quad \frac{x+5}{(x-3)(x+1)}>0 \quad \begin{aligned} & x \neq 3 \\ & x \neq-1\end{aligned}$

$x \in(-5,-1) \cup(3,+\infty)$
(9) $(x+2)^{10}=x^{10} \cdots+a_{4} x^{6} \cdots \quad a_{4}=C_{10}^{4}=\frac{10!}{6!\cdot 4!}$
$a_{n}=\frac{{ }^{10 \cdot 5 \cdot x \cdot 7}}{x \cdot z \cdot z}=210 \quad a_{4}=210 \quad$ alternetwets bs Pescel's trianshe
(10) $n=7 n+2=13 m+5$
$7 k=3 \bmod 13 \quad 7 u^{\prime}=1 \bmod 13$ $k=6+13 l \quad(m=7 l+3) \quad k=27.6=3 \bmod 13$ $n=7(6+13 l)+2=7.13 l+44$

$$
n=91 l+44 \quad l=0, \pm 1, \pm 2
$$

12.

Math 9 placement test 2014

1. Open brackets and expand the following expressions
a. $(a+b)^{2}=$
b. $(a-b)^{3}=$
2. Factor the following expressions
a. $a^{2}-b^{2}=$
b. $\quad a^{3}-b^{3}=$
c. $a^{3}+b^{3}=$
d. $1+a+a^{2}+a^{3}=$
3. Find the coefficient of x^{5} in the expression $(1+2 x)^{8}$
4. Find the remainder of 3^{2014} upon division by 7 .
5. Solve the equation

$$
\frac{x^{2}+1}{2 x}+\frac{2 x}{x^{2}+1}=2
$$

6. Eight teams have reached the quarter-finals of the soccer World Cup.
a. How many ways are there for these teams to be paired to play the quarter-final games?
b. How many different outcomes of which team wins which medal (gold, silver, bronze) are possible?
7. Corners of a square with the side a are cut off so that a regular octagon is obtained. Find the area of this octagon.

Math 9 placement test 2014: solutions to selected problems

1. Open brackets and expand the following expressions
a. $(a+b)^{2}=$
b. $\quad(a-b)^{3}=$
2. Factor the following expressions
a. $\quad a^{2}-b^{2}=$
b. $a^{3}-b^{3}=$
c. $a^{3}+b^{3}=$
d. $1+a+a^{2}+a^{3}=$
3. Find the coefficient of x^{5} in the expression $(1+2 x)^{8}$

$$
(1+2 x)^{8}=\cdots+C_{8}^{3}(2 x)^{5}+\cdots=\cdots+\frac{8!}{5!\cdot 3!} \cdot 2^{5} \cdot x^{5}+\cdots=\cdots+7 \cdot 8 \cdot 32 \cdot x^{5}+\cdots
$$

4. Find the remainder of 3^{2014} upon division by 7 .

$$
3^{2014}=(7+2)^{1007}=(\ldots) \cdot 7+2^{1007}=(\ldots) \cdot 7+4 \cdot(7+1)^{335}=(\ldots) \cdot 7+4
$$

5. Solve the equation

$$
\frac{x^{2}+1}{2 x}+\frac{2 x}{x^{2}+1}=2
$$

$\frac{x^{2}+1}{2 x}=t$, then $\frac{x^{2}+1}{2 x}+\frac{2 x}{x^{2}+1}=2 \Leftrightarrow t+\frac{1}{t}=2 \Leftrightarrow t^{2}-2 t+1=0 \Leftrightarrow t=1 \Leftrightarrow \frac{x^{2}+1}{2 x}=1 \Leftrightarrow x^{2}-$ $2 x+1=0 \Leftrightarrow x=1$.
8. Eight teams have reached the quarter-finals of the soccer World Cup.
a. How many ways are there for these teams to be paired to play the quarter-final games?

For 2 n teams, let the number of pairings be P_{n}. There is $2 \mathrm{n}-1$ ways to pair the first team and thus select the first pair. For the remaining $2 n-2$ teams, there will be $2 n-3$ ways to select the second pair, and so on. Hence, $P_{n}=(2 n-1) \cdot P_{n-1}=(2 n-1) \cdot(2 n-3) \cdot \ldots \cdot 3 \cdot 1$. For the case of 8 teams, $P_{4}=7 \cdot 5 \cdot 3=105$.
b. How many different outcomes of which team wins which medal (gold, silver, bronze) are possible?

This is given by the number of possible ways to select 3 out of 8 , where order matters. The answer is $A_{8}^{3}=\frac{8!}{5!}=6 \cdot 7 \cdot 8=336$.
9. Corners of a square with the side a are cut off so that a regular octagon is obtained. Find the area of this octagon.

