MATH 8: HANDOUT 27
 REVIEW TEST

1. Compute

$$
(1+\sqrt{5})^{7}+(1-\sqrt{5})^{7}
$$

2. Prove distributive laws using truth tables:

$$
\begin{aligned}
& A \vee(B \wedge C) \leftrightarrow(A \vee B) \wedge(A \vee C) \\
& A \wedge(B \vee C) \leftrightarrow(A \wedge B) \vee(A \wedge C)
\end{aligned}
$$

3. Write the following statements using logic operations and quantifiers:
(a) All linguists speak Swahili
(b) Some linguists don't speak Swahili
(c) No one but a linguist speaks Swahili
(d) No one would wake up at 5am unless they are a linguist or they speak Swahili Please use the following notation:
P - set of all people
$L(x)-x$ is a linguist
$S(x)-x$ speaks Swahili
$W(x)-x$ wakes up at 5 am
4. (a) Compute gcd $(32,12)$ using Euclid's algorithm
(b) Write $\operatorname{gcd}(32,12)$ in the form $32 k+12 l$. (You can use guess and check, or proceed in the same way as in the previous problem)
(c) Does the equation $32 x+12 y=10$ have integer solutions? Can you find at least one solution?
(d) Does the equation $32 x+12 y=11$ have integer solutions? Can you find at least one solution?
(e) Can you give complete answer, for which integer values of c the equation $32 x+12 y=c$ has integer solutions?
5. (a) Find an inverse of $13 \bmod 23$.
(b) Solve an equation $13 x \equiv 5 \bmod 23$.
6. Find all solutions of the system:

$$
\begin{array}{ll}
x \equiv 4 & \bmod 5 \\
x \equiv 3 & \bmod 7 \\
x \equiv 3 & \bmod 11
\end{array}
$$

