MATH 8: HANDOUT 25 NUMBER THEORY 7: CHINESE REMAINDER THEOREM

CHINESE REMAINDER THEOREM

The previous result can be stated as follows: if a, b are relatively prime, then

$$x \equiv 0 \mod a$$
$$x \equiv 0 \mod b$$

happens if and only if $x \equiv 0 \mod ab$.

This is a special case of the following famous result.

Theorem (Chinese Remainder Theorem). Let a, b be relatively prime. Then, for any choice of k, l, the following system of congruences:

$$x \equiv k \mod a$$
$$x \equiv l \mod b$$

has a unique solution mod ab, i.e. it has solutions and any two solutions differ by a multiple of ab. In particular, there exists exactly one solution x such that $0 \le x < ab$.

Proof. Let x = k + ta for some integer t. Then x satisfies the first congruence, and our goal will be to find t such that x satisfies the second congruence.

To do this, write $k + ta \equiv l \mod b$, which gives $ta \equiv l - k \mod b$. Notice now that because a, b are relatively prime, a has an inverse $h \mod b$ such that $ah \equiv 1 \mod b$. Therefore $t \equiv h(l - k) \mod b$, and x = k + ah(l - k) is a solution to both the congruences.

To see uniqueness, suppose x and x' are both solutions to both congruences such that $0 \le x, x' < ab$. Then we have

$$\begin{aligned} x - x' &\equiv k - k \equiv 0 \mod a \\ x - x' &\equiv l - l \equiv 0 \mod b \end{aligned}$$

Thus x - x' is a multiple of both a and b; because a, b are relatively prime, this implies that x - x' is a multiple of ab. Thus, any two solutions differ by a multiple of ab.

Homework

1. Solve the following systems of congruences

(a)

(b)

$x\equiv 1$	$\mod 3$	$z \equiv 1$	$\mod 5$
$x \equiv 1$	$\mod 5$	$z \equiv 6$	$\mod 7$

- **2.** Daniil has number of toys. If he tries to divide them equally among 4 kids, one toy is left over. Same happens if he tries to divide them equally among 5 or 6 kids; however, the toys can be divided equally among 7 kids. What is the smallest number of toys Daniil can have? [Hint: if number of toys is n, then what can you say about number n 1?]
- **3.** (a) Find the remainder upon division of 23^{2021} by 7.
- (b) Find the remainder upon division of 23^{2021} by 70. [Hint: use $70 = 7 \cdot 10$ and Chinese Remainder Theorem.]
- **4.** (a) Find the remainder upon division of 24^{46} by 100.
 - (b) Determine all integers k such that $10^k 1$ is divisible by 99.