MATH 8: HANDOUT 25

NUMBER THEORY 7: CHINESE REMAINDER THEOREM

Chinese Remainder Theorem

The previous result can be stated as follows: if a, b are relatively prime, then

$$
\begin{array}{ll}
x \equiv 0 & \bmod a \\
x \equiv 0 & \bmod b
\end{array}
$$

happens if and only if $x \equiv 0 \bmod a b$.
This is a special case of the following famous result.
Theorem (Chinese Remainder Theorem). Let a, b be relatively prime. Then, for any choice of k, l, the following system of congruences:

$$
\begin{array}{lc}
x \equiv k & \bmod a \\
x \equiv l & \bmod b
\end{array}
$$

has a unique solution mod ab, i.e. it has solutions and any two solutions differ by a multiple of ab. In particular, there exists exactly one solution x such that $0 \leq x<a b$.
Proof. Let $x=k+t a$ for some integer t. Then x satisfies the first congruence, and our goal will be to find t such that x satisfies the second congruence.

To do this, write $k+t a \equiv l \bmod b$, which gives $t a \equiv l-k \bmod b$. Notice now that because a, b are relatively prime, a has an inverse $h \bmod b$ such that $a h \equiv 1 \bmod b$. Therefore $t \equiv h(l-k) \bmod b$, and $x=k+a h(l-k)$ is a solution to both the congruences.

To see uniqueness, suppose x and x^{\prime} are both solutions to both congruences such that $0 \leq x, x^{\prime}<a b$. Then we have

$$
\begin{array}{cc}
x-x^{\prime} \equiv k-k \equiv 0 & \bmod a \\
x-x^{\prime} \equiv l-l \equiv 0 & \bmod b
\end{array}
$$

Thus $x-x^{\prime}$ is a multiple of both a and b; because a, b are relatively prime, this implies that $x-x^{\prime}$ is a multiple of $a b$. Thus, any two solutions differ by a multiple of $a b$.

Homework

1. Solve the following systems of congruences
(a)

$$
\begin{array}{ll}
x \equiv 1 & \bmod 3 \\
x \equiv 1 & \bmod 5
\end{array}
$$

(b)

$$
\begin{array}{ll}
z \equiv 1 & \bmod 5 \\
z \equiv 6 & \bmod 7
\end{array}
$$

2. Daniil has number of toys. If he tries to divide them equally among 4 kids, one toy is left over. Same happens if he tries to divide them equally among 5 or 6 kids; however, the toys can be divided equally among 7 kids. What is the smallest number of toys Daniil can have? [Hint: if number of toys is n, then what can you say about number $n-1$?]
3. (a) Find the remainder upon division of 23^{2021} by 7.
(b) Find the remainder upon division of 23^{2021} by 70 . [Hint: use $70=7 \cdot 10$ and Chinese Remainder Theorem.]
4. (a) Find the remainder upon division of 24^{46} by 100.
(b) Determine all integers k such that $10^{k}-1$ is divisible by 99 .
