MATH 8

ASSIGNMENT 28: EULER FUNCTION

MAY 16, 2021

Theorem (Fermat's Little theorem). For any prime p and any number a not divisible by p, we have $a^{p-1}-1$ is divisible by p, i.e.

$$
a^{p-1} \equiv 1 \quad \bmod p
$$

This shows that remainders of $a^{k} \bmod p$ will be repeating periodically with period $p-1$ (or smaller).
A similar statement holds for remainders modulo n, where n is not a prime. However, in this case $p-1$ must be replaced by a more complicated number: the Euler function of n.

Definition. For any positive integer n, Euler's function $\varphi(n)$ is defined by

$$
\varphi(n)=\text { number of integers } a, 1 \leq a \leq n-1, \text { which are relatively prime with } n
$$

Note that by previously proved results, "relatively prime with n " is equivalent to "is invertible mod n ".
For example, if $n=p$ is prime, then any non-zero remainder $\bmod n$ is relatively prime with n, so in this case $\varphi(p)=p-1$ Some properties of Euler's function are given in problems below.

Theorem (Euler's theorem). For any integer $n>1$ and any number a which is relatively prime with n, we have $a^{\varphi(n)}-1$ is divisible by n, i.e.

$$
a^{\varphi(n)} \equiv 1 \quad \bmod n
$$

In the example when $n=p$ is prime, we get $\varphi(p)=p-1$, , soin this case Euler's theorem becomes Fermat's little theorem.

For example, $\varphi(10)=4$. This means that for any number a which is relativley prime with 10 , remainders of a^{k} modulo 10 (i.e., the last digit of a^{k}) repeat periodically with period 4.

1. Compute $\varphi(25) ; \varphi(125) ; \varphi(100)$.
2. Let p be prime. Compute $\varphi(p) ; \varphi\left(p^{2}\right) ; \varphi\left(p^{k}\right)$
3. Use Chineses remainder theorem to show that if m, n are relatively prime, then a number a is invertible modulo $m n$ if and only if it is invertible $\bmod n$ and inviertible $\bmod n$. Deduce from this that

$$
\varphi(m n)=\varphi(m) \varphi(n) \quad \text { if } \operatorname{gcd}(m, n)=1
$$

4. Find the last two digits of $14^{14^{14}}$.
*5. (a) Show that if a is not divisible by 7 or 11 , then $a^{60} \equiv a \bmod 77$
(b) Show that for any a, we have $a^{61} \equiv a^{121} \equiv \cdots \equiv a \bmod 77$
(c) Given a number a between 1 and 77, Alice computes $b=a^{13} \bmod 77$ and shows the answer to Bob. Show that then Bob can find a by using $a=b^{d}$ for some d. [Hint: it suffices to find d such that $13 d \equiv 1 \bmod 60]$
