MATH 7: HANDOUT 24

TRIGONOMETRY 6: GRAPH OF TANGENT. MORE EQUATIONS.

Tangent in the Trigonometric Circle

Just like with the sine and the cosine, the tangent can be defined through the trigonometric circle. Given a point (with coordinates $(\cos \alpha, \sin \alpha)$) corresponding to the angle α, one draws a line which passes through the origin and through this point, the tangent of α is the position along a line tangent to the circle through the point $(1,0)$ of the intersection of these two lines (see figure 11). For angles $0<\alpha<\pi / 2$, this agrees with the previous. For other angles, we will use this procedure to define the tangent.

Figure 1. Meaning of $\tan \alpha$ in the trigonometric circle.
Compare this definition with the values we know from the table:

Trigonometric Functions								
Function	Notation	Definition	0	$\frac{\pi}{6} / 30^{\circ}$	$\frac{\pi}{4} / 45^{\circ}$	$\frac{\pi}{3} / 60^{\circ}$	$\frac{\pi}{2} / 90^{\circ}$	
sine	$\sin (\alpha)$	$\frac{\text { opposite side }}{\text { hypotenuse }}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	
cosine	$\cos (\alpha)$	$\frac{\text { adjacent side }}{\text { hypotenise }}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	
tangent	$\tan (\alpha)$	$\frac{\text { opposite side }}{\text { adjacent side }}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞	

Graph of tangent
By looking at the values of tangent as we go around the trigonometric circle, we find out a few facts like:

- $\tan 0^{\circ}=\tan 180^{\circ}=0$
- $\tan x$ increases from 0 to 90°.
- As x is approaching $90^{\circ}, \tan x$ grows all the way to "infinity."
- As x goes from 0° to $-90^{\circ}, \tan x$ decreases all the way to "negative infinity."
- $\tan x+180^{\circ}=\tan x$.

We can see all of these facts clearly in the graph of the function $\tan x$:

Solving the equation $\tan x=\tan c$. In this case (figure 2) we find that, for a given c, the solution to the equation $\tan x=\tan c$ is

$$
\begin{gathered}
x=c+\pi \times n \\
\quad \text { or } \\
x=c+180^{\circ} \times n,
\end{gathered}
$$

where n can be any integer number.

Figure 2. A few examples of the relation $\tan x=\tan (x+\pi)$.

LAW OF COSINES

The law of cosines allows you to find the third side of a triangle if you know two sides and an angle between them. That is, if a and b are two sides, and $\angle C$ is an angle between them, then the third side c can be found using the following formula:

$$
c=\sqrt{a^{2}+b^{2}-2 a b \cdot \cos \angle C}
$$

HOMEWORK

1. Solve the following equations
(a) $\sqrt{3} \tan x=1$
(b) $\tan x=-1$
(c) $\tan x=-\sqrt{3}$
(d) $(\sin x)^{2}=(\cos x)^{2}$ [Hint: $\tan x=\sin x / \cos x$.]
2. Determine the internal angles of a triangle $A B C$ knowing that the angles form an arithmetic sequence and that the sine of the sum of the two smallest angles is $\sqrt{3} / 2$.
3. What are the values of x for which:
(a) $\sin x>-\frac{\sqrt{2}}{2}$
(b) $-\frac{1}{2} \leq \sin x<\frac{\sqrt{2}}{2}$
(c) $2(\sin x)^{2}<\sin x$
(d) $\cos 2 x \leq \frac{\sqrt{3}}{2}$
(e) $\left(\tan x^{2}\right)^{2} \leq 1$

It might help to examine the graphs of trigonometric functions to answer this question.

