MATH 7: HANDOUT 24 TRIGONOMETRY 6: GRAPH OF TANGENT. MORE EQUATIONS.

TANGENT IN THE TRIGONOMETRIC CIRCLE

Just like with the sine and the cosine, the tangent can be defined through the trigonometric circle. Given a point (with coordinates $(\cos \alpha, \sin \alpha)$) corresponding to the angle α , one draws a line which passes through the origin and through this point, the tangent of α is the position along a line tangent to the circle through the point (1,0) of the intersection of these two lines (see figure 1). For angles $0 < \alpha < \pi/2$, this agrees with the previous. For other angles, we will use this procedure to define the tangent.

FIGURE 1. Meaning of $\tan \alpha$ in the trigonometric circle.

Compare this definition with the values we know from the table:

Trigonometric Functions							
Function	Notation	Definition	0	$\frac{\pi}{6}/30^{\circ}$	$\frac{\pi}{4}/45^{\circ}$	$\frac{\pi}{3}/60^{\circ}$	$\frac{\pi}{2}/90^{\circ}$
sine	$\sin(\alpha)$	opposite side hypotenuse	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosine	$\cos(\alpha)$	adjacent side hypotenuse	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tangent	$\tan(\alpha)$	opposite side adjacent side	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞

GRAPH OF TANGENT

By looking at the values of tangent as we go around the trigonometric circle, we find out a few facts like:

- $\tan 0^\circ = \tan 180^\circ = 0$
- $\tan x$ increases from 0 to 90°.

- As x is approaching 90°, tan x grows all the way to "infinity."
 As x goes from 0° to -90°, tan x decreases all the way to "negative infinity."
- $\tan x + 180^\circ = \tan x$.

We can see all of these facts clearly in the graph of the function $\tan x$:

Solving the equation $\tan x = \tan c$. In this case (figure 2) we find that, for a given c, the solution to the equation $\tan x = \tan c$ is

$$x = c + \pi \times n$$

or
$$x = c + 180^{\circ} \times n,$$

where n can be any integer number.

FIGURE 2. A few examples of the relation $\tan x = \tan (x + \pi)$.

LAW OF COSINES

The law of cosines allows you to find the third side of a triangle if you know two sides and an angle between them. That is, if a and b are two sides, and $\angle C$ is an angle between them, then the third side c can be found using the following formula:

$$c = \sqrt{a^2 + b^2 - 2ab \cdot \cos \angle C}$$

Homework

- 1. Solve the following equations
 - (a) $\sqrt{3} \tan x = 1$
 - (b) $\tan x = -1$
 - (c) $\tan x = -\sqrt{3}$
 - (d) $(\sin x)^2 = (\cos x)^2$ [Hint: $\tan x = \sin x / \cos x$.]
- 2. Determine the internal angles of a triangle ABC knowing that the angles form an arithmetic sequence and that the sine of the sum of the two smallest angles is $\sqrt{3}/2$.
- **3.** What are the values of *x* for which:
 - (a) $\sin x > -\frac{\sqrt{2}}{2}$
 - (b) $-\frac{1}{2} \le \sin x < \frac{\sqrt{2}}{2}$ (c) $2(\sin x)^2 < \sin x$

 - (d) $\cos 2x \le \frac{\sqrt{3}}{2}$ (e) $(\tan x^2)^2 \le 1$

It might help to examine the graphs of trigonometric functions to answer this question.