## MATH 7: HANDOUT 24 <br> TRIGONOMETRY 4: TRIGONOMETRIC GRAPHS.

## GRAPH OF SINE

By looking at the values of sine as we go around the trigonometric circle, we find out a few facts like:

- $\sin 0=\sin \pi=0$
- $\sin x$ increases from 0 to $\frac{\pi}{2}$.
- At $x=\frac{\pi}{2}, \sin x$ reaches it's maximum value, 1 .
- At $x=\frac{3 \pi}{2}, \sin x$ reaches it's minimum value, -1 .
- $\sin (x+2 \pi)=\sin x$.

We can see all of these facts clearly in the graph of the function $\sin x$ :


Homework

1. Fill out the following table. Make sure you understand how to convert degrees to radians, and use the values of sine and cosine that you already know!

| Degrees | Radians | sine | cosine |
| :---: | :---: | :---: | :---: |
| $180^{\circ}$ | $\pi$ | 0 | -1 |
| $45^{\circ}$ |  |  |  |
| $60^{\circ}$ |  |  |  |
| $120^{\circ}$ |  |  |  |
| $150^{\circ}$ |  |  |  |
| $210^{\circ}$ |  |  |  |
| $315^{\circ}$ |  |  |  |
|  | $2 \pi / 3$ |  |  |
|  | $9 \pi / 4$ |  |  |
|  | $5 \pi / 6$ |  |  |
|  | $-5 \pi / 4$ |  |  |
|  | $11 \pi / 3$ |  |  |
|  | $7 \pi / 6$ |  |  |
|  |  | $\sqrt{3} / 2$ | $1 / 2$ |
|  |  | $\sqrt{2} / 2$ | $-\sqrt{2} / 2$ |
|  |  | $-1 / 2$ | $-\sqrt{3} / 2$ |

2. Using the trigonometric circle, show that $\cos x=\sin (x+\pi / 2)$ for any angle $x$. Then use this fact and the graph of the sine function to construct (draw) the graph of the cosine function.
