Homework 23: Coordinate geometry review

HW23 is Due April 11; submit to Google classroom 15 minutes before the class time.

1. Coordinate geometry: Introduction

The **midpoint** M of a segment AB with endpoints $A(x_1, y_1)$ and $B(x_2, y_2)$ has coordinates:

$$M\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$

The distance between two points $A(x_1, y_1)$ and $B(x_2, y_2)$ is given by the following formula:

$$d = \sqrt{(x_2 - x_2)^2 + (y_2 - y_1)^2}$$

Line: y = mx + bwith a slope $m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$ and intercept **b**. **Parabola**: $y = ax^2 + bx + c$ (standard form) or $y = a(x - h)^2 + k$ (vertex form)

Circles: The equation of the circle with the center $M(x_0, y_0)$ and radius r is: $(x - x_0)^2 + (y - y_0)^2 = r^2$.

2. Graphs of functions

In general, the relation between x and y could be more complicated and could be given by some formula of the form y = f(x), where f is some function of x (i.e., some formula which contains x). Then the set of all points whose coordinates satisfy this relation is called the **graph** of *f*.

- Vertical shift: y = f(x) + k, shift up by k •
- $y = f(x) \mathbf{k}$, shift down by k k > 0 h > 0
- Horizontal shift: y = f(x h), shift right by h ٠
- y = f(x + h), shift to the left by h
- Reflection, x-axis: y = -f(x), multiply the function by -1. •
- Reflection, y-axis: y = f(-x), multiply the argument by -1.

3. Quadratic function (revisited +)

Quadratic equation in a standard form: $ax^2 + bx + c = 0$

- a, b, c coefficients, determinant D: $D = b^2 4ac$, solutions(roots): $x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$ D determines the number of roots! (D < 0 no solutions, D = 0 one solution, D > 0 two solutions) ٠

Quadratic function in a factored form: $y = a(x - x_1)(x - x_2)$, where

- roots: the numbers x_1 and x_2 solutions of the quadratic equation (y = 0)
- Vieta's formulas: The roots are related to the coefficients: $x_1x_2 = \frac{c}{a}$ and $x_1 + x_2 = -\frac{b}{a}$

Quadratic function in a vertex form: $y = a(x - h)^2 + k$

- Method 1: completing the square. Use the formulas for fast multiplication.
- **Method 2: find the vertex**. Determine the coefficients *a*, *b*, *c*. Find the vertex x-and y- coordinates $x_v = h = -\frac{b}{2a}$. $y_v = k = y(x_v) = ax_v^2 + bx_v + c$

Modified vertex form: rewrite the equation into separate $y - and x - part 4p(y - k) = (x - h)^2$

Distance from any point on the parabola to focus and directrix: $p = \frac{1}{4\pi}$ Vertex V(h,k) Focus F(h,k+p) directrix y = k - p

Homework problems

Instructions: Please always write solutions on a *separate sheet of paper*. Solutions should include explanations. I want to see more than just an answer: I also want to see how you arrived at this answer, and some justification why this is indeed the answer. So **please include sufficient explanations**, which should be clearly written so that I can read them and follow your arguments.

ALL GRAPHS/POINTS/FIGURES SHOULD BE DRAWN BY YOU - NOT PRINTED! USE QUADRILE PAPER!

- 1. For what values of *a* does the polynomial $x^2 + ax + 14$ have no roots? exactly one root? two roots?
- 2. Let x_1, x_2 be the roots of the equation $x^2 + 3x + 4 = 0$. Without calculating the roots, find: a. $x_1^2 + x_2^2$ Hint: use the Vieta's formulas b. $\frac{1}{x_1^2} + \frac{1}{x_2^2}$
- 3. A circle with center (3, 5) intersects the y-axis at (0, 1).
 - a. Find the radius of the circle
 - b. Find the coordinates of the other point of intersection on the y-axis
- 4. Convert to vertex form (use completing the square method or find the coordinates of the vertex method) and draw the following graphs:
 - a. $y = x^2 5x + 5$ b. $y = x^2 - 4x + 2$
 - c. $v = x^2 x 1$
- 5. Convert to vertex form and draw the following graphs. On the graph show the vertex point, the focus point, and the directrix line. You will have to calculate their coordinates/equations first.
 a. y = -x² + 3x 0.5
 b. y = x² + 4x 4
- 6. Graph $y = (\sqrt{x})^2$. Note that the domain of the function is $x \ge 0$.
- 7. A triangle ABC has corners A(-3, 0), B(0, 3) and (3, 0). The line $y = \frac{1}{3}x + 1$ separates the triangle in 2. What is the area of the piece lying below the line?