MATH 5 - PREREQUISITES FOR MATH 6

1. Program

- Algebraic expressions. Commutativity, associativity, distributivity.
- Equations. Solving word problems with equations.
- Powers of 2.
- Binary numbers.
- Powers. Negative powers. Scientific notation.
- $a^{2}-b^{2}=(a-b)(a+b)$
- Square roots.
- Pythagorean theorem.
- Basic probability theory: addition rule, complement rule, product rule.
- Geometry: parallel lines and angles (alternate interior, alternate exterior, corresponding).
- Parallelogram, various definitions, properties.
- Congruence tests for triangles (SAS, ASA, SSS).
- Isosceles triangle. Median, bisector, height.
- Trapezoid. Its midline. Area.

2. Problems

1. Rewrite each of the expressions below in the simplest possible form, by collecting the like terms if possible.

$$
\begin{array}{lll}
2 x+7+5 x+2+3 x & 3 x+9+5 x y+2 x y+3 & 3(2 x-1)+x \\
2 a(a-2)-a(a-1) & (2 x-1)(x+1) &
\end{array}
$$

2. An apple cost 9 cents, and an orange 15 cents. Elena bought some apples and oranges, 20 fruit in all, and paid $\$ 2.64$. How many apples and how many oranges did she buy?
3. A boy had a bag of apples. He gave $1 / 2$ of them to his parents, $1 / 5$ to his brother, $1 / 4$ to his sister and the last apple he ate himself. How many apples did he originally have?
4. Simplify the following expressions
(a) $x+4(1-x)$
(b) $2+5 x-4(3-x)$
(c) $5(x-1)-3(2 x+1)$
5. If you take half my age and add 7 , you get my age 13 years ago. How old am I?
6. Two secretaries, Barbara and Mary, need to type a 100 page document. Barbara can type it in 4 hours; Mary types slower, so it would take her 5 hours to do this. How fast can they type it together if they divide the work between two of them in the most efficient way?
7. Find the sum $1+2+4+\cdots+2^{n}$ (the answer, of course, will depend on n). [Hint: first try computing it for several small values of n : find $1+2$, then $1+2+4$, then $1+2+4+8$. See if you can notice a pattern. After this, try formulating a general rule.]
8. Convert the decimal numbers to binary:
$9,12,24,38,45$
9. Convert the following binary numbers to decimal:

101, 1001, 10110, 11011, 10101
10. Compute $110101_{b}+111011_{b}$ without converting numbers to decimal form.
11. Simplify the following expression:

$$
\frac{\left(x^{2} y^{2}\right) \cdot x^{3}}{x^{2} y^{5}}
$$

12. Let $a=2 \cdot 10^{8}, b=10^{5}$. Compute $a^{2} \cdot b, \frac{a}{b}, a^{2} \div b^{3}$.
13. If $a=2^{-13} 3^{9}, b=2^{11} 3^{-7}$, what is the value of $a b$? of a / b ?
14. Write the following numbers using scientific notation.
(a) the distance from Earth to Pluto is $\approx 7,527,000,000 \mathrm{~km}$;
(b) the distance from Earth to the star Sirius is $\approx 81,900,000,000,000 \mathrm{~km}$;
15. Factor the following number into primes: $99^{2}-9^{2}$. [Hint: you do not have to compute this number.]
16. Find the following square roots. If you can not find the number exactly, at least say between which two whole numbers the answer is, e.g., between 5 and 6 .
(a) $\sqrt{81}$
(b) $\sqrt{10,000}$
(c) $\sqrt{10^{8}}$
17. If, in a right triangle, one leg has length 1 and the hypotenuse has length 2 , what is the other leg?
18. Simplify: $(\sqrt{17})^{2},(\sqrt{13})^{4},(\sqrt{11})^{3}, \sqrt{2^{4} 3^{6}}, \sqrt{2^{4} 3^{5}}$.
19. A license plate consists of 3 letters, followed by three digits. How many possible license plates are there?
20. We roll two identical dice. What is the probability of getting 1 and 3 ?
21. We roll two identical dice. What is the probability of getting sum of two numbers equal to 4 ?
22. If we toss a coin 5 times, what is the probability that at least one will be heads?
23. Solve equations:
(a) $\frac{3}{8} x=\frac{1}{3}$
(b) $|2 x-5|=1$
(c) $\frac{(x-2)}{x-1}=3$
24. Show that in a parallelogram, diagonally opposite angles are equal $\angle A=\angle C, \angle B=$ $\angle D$
25. Let $A B C D$ be a quadrilateral such that $A B=$ $B C=C D=A D$ (such a quadrilateral is called rhombus). Let M be the intersection point of $A C$ and $B D$.
(a) Show that $\triangle A B C \cong \triangle A D C$
(b) Show that $\triangle A M B \cong \triangle A M D$
(c) Show that the diagonals are perpendicular and that the point M is the midpoint of each of the diagonals.
[Hint: after doing each part, mark on the figure all the information you have found - which angles
 are equal, which line segments are equal, etc: you may need this information for the following parts.]
26. Let $A B C D$ be a quadrilateral such that sides $A B$ and $C D$ are parallel and equal (but we do not know whether sides $A D$ and $B C$ are parallel).
(a) Show that triangles $\triangle A M B$ and $\triangle C M D$ are congruent.
(b) Show that sides $A D$ and $B C$ are indeed parallel and therefore $A B C D$ is a parallel-
 ogram.
27. Let $A B C D$ be a parallelogram, and let $B E, C F$ be perpendiculars from B, C to the line $A D$.
(a) Show that triangles $\triangle A B E$ and $\triangle D C F$ are congruent.
(b) Show that the area of parallelogram is equal to height \times base, i.e. $B E \times A D$.

28. In the figure to the right, $A B C D$ is a rectangle, and M is the midpoint of $B C$. Prove that then triangle $A M D$ is isosceles.

29. (a) Show that if in a quadrilateral $A B C D$ diagonals bisect each other (i.e., intersection point is hte midpoint of each of the diagonals), then $A B C D$ is a parallelogram. [Hint: find some congruent triangles in the figure.]
(b) Show that if in a quadrilateral $A B C D$ diagonals bisect each other and are perpen-
 dicular, then it is a rhombus.
30. Find all lenghts, angles, and area in the figure shown to the right.

