MATH 6: TRANSFORMATIONS

1. Symmetries and Transformations

A transformation is an operation which sends every point (x, y) of the plane to a new point $\left(x^{\prime}, y^{\prime}\right)$.
A transformation is a rigid motion or an isometry if it preserves distances: for any points P, Q, we have $P Q=P^{\prime} Q^{\prime}$.

Theorem 1.

1. An isometry preserves angles.
2. An isometry preserves parallelism.
3. An isometry preserves areas.
4. Any isometry sends lines to lines: if l is a line and T an isometry, then $T(l)$ is again a line.
5. Composition of isometries is again an isometry.

Here are some examples of transformations:
Reflection: For any line l, the reflection r_{l} is defined by the condition that the reflection P^{\prime} of P lies on the perpendicular from P to l, on the other side of l than P, at the same distance from l : in other words, l is the perpendicular bisector of $P^{\prime} P$. The notation is $r_{l}(P)=P^{\prime}$
Rotation: For any point O and real number φ, we define rotation $R_{O, \varphi}$ to be the counterclockwise rotation around point O by the angle φ (if φ is negative, clockwise rotation by angle $|\varphi|$). The notation is $R_{O, \varphi}(P)=P^{\prime}$
Translation: A translation is a transformation that slides or moves every point of a figure by the same distance in a given direction. The notation we use is $T_{a, b}(P)=P^{\prime}$, where a and b represent the units on the x -axis and respectiv y -axis by which the point moves. In other words if $P(x, y)$ then $P\left(x^{\prime}, y^{\prime}\right)$ has coordinates $x^{\prime}=x+a=$ and $y^{\prime}=y+b$. For example $T_{2,-3}(1,3)=(2+1,-3+3)=(3,0)$

Theorem 2. Reflections, rotations, and translations are isometries.

2. Symmetry

A figure has line symmetry if it can be folded in half and every point in one half maps onto a ppoint in the second half.

A figure has rotational symmetry if the figure can be rotated by a given angle and every point on the rotated figure maps to a point on the original figure.

Homework

1. What is the image of point $\mathrm{P}(5,-1)$ after a rotation of 180°
2. Given $P(2,3)$, what are the coordinates of $T_{2,6}(P)$?
3. $S^{\prime}=r_{y-a x i s}(S)$. What are the coordinates of S^{\prime} if S has coordinates $(-1,4)$?
4. What are the new coordinates of point (x, y) after a rotation of 90° ? (Or using the new notation we learned, what is $R_{90}(x, y) ?$) How about $R_{180}(x, y)$? $R_{270}(x, y)$?
5. The image of point L after translation $(x, y) \rightarrow(x+3, y-2)$ is $L^{\prime}(5,1)$. What are the coordinates of L ?
