MATH 6: TRANSFORMATIONS

1. Symmetries and Transformations

A transformation is an operation which sends every point (x,y) of the plane to a new point (x',y').

A transformation is a rigid motion or an isometry if it preserves distances: for any points P, Q, we have PQ = P'Q'.

Theorem 1.

- 1. An isometry preserves angles.
- 2. An isometry preserves parallelism.
- **3.** An isometry preserves areas.
- **4.** Any isometry sends lines to lines: if l is a line and T an isometry, then T(l) is again a line.
- 5. Composition of isometries is again an isometry.

Here are some examples of transformations:

Reflection: For any line l, the reflection r_l is defined by the condition that the reflection P' of P lies on the perpendicular from P to l, on the other side of l than P, at the same distance from l: in other words, l is the perpendicular bisector of P'P. The notation is $r_l(P) = P'$

Rotation: For any point O and real number φ , we define rotation $R_{O,\varphi}$ to be the counterclockwise rotation around point O by the angle φ (if φ is negative, clockwise rotation by angle $|\varphi|$). The notation is $R_{O,\varphi}(P) = P'$

Translation: A translation is a transformation that slides or moves every point of a figure by the same distance in a given direction. The notation we use is $T_{a,b}(P) = P'$, where a and b represent the units on the x-axis and respectiv y-axis by which the point moves. In other words if P(x,y) then P(x',y') has coordinates x' = x + a = and y' = y + b. For example $T_{2,-3}(1,3) = (2+1,-3+3) = (3,0)$

Theorem 2. Reflections, rotations, and translations are isometries.

2. Symmetry

A figure has line symmetry if it can be folded in half and every point in one half maps onto a ppoint in the second half.

A figure has rotational symmetry if the figure can be rotated by a given angle and every point on the rotated figure maps to a point on the original figure.

Homework

- 1. What is the image of point P(5,-1) after a rotation of 180°
- **2.** Given P(2,3), what are the coordinates of $T_{2,6}(P)$?
- **3.** $S' = r_{y-axis}(S)$. What are the coordinates of S' if S has coordinates (-1,4)?
- **4.** What are the new coordinates of point (x,y) after a rotation of 90° ? (Or using the new notation we learned, what is $R_{90}(x,y)$?) How about $R_{180}(x,y)$? $R_{270}(x,y)$?
- 5. The image of point L after translation $(x,y) \to (x+3,y-2)$ is L'(5,1). What are the coordinates of L?