MATH 6: HANDOUT 26 SQUARE ROOTS

The square root of a number a is a number whose square is equal to a. For example the square root of 25 is 5, because $5^2 = 25$

The square root of number a is commonly denoted by \sqrt{a} . Note that $\sqrt{ab} = \sqrt{a}\sqrt{b}$, but $\sqrt{a+b}$ is not equal to $\sqrt{a} + \sqrt{b}$. Another way to think about radicals is using exponents laws.

 $a^{\frac{1}{2}} = \sqrt[2]{a} = \sqrt{a}$

 $a^{\frac{1}{3}} = \sqrt[3]{a}$, this is called the cubic root of a

 $a^{\frac{1}{n}} = \sqrt[n]{a}$, in general this is called - the n-th root of a (or a radical n)

1. Review Algebra

$$a^{0} = 1$$

$$a^{m}a^{n} = a^{m+n}$$

$$\frac{a^{m}}{a^{n}} = a^{m-n}$$

$$(ab)^{n} = a^{n}b^{n}$$

$$(\frac{a}{b})^{n} = \frac{a^{n}}{b^{n}}$$

$$a^{-n} = \frac{1}{a^{n}}$$

$$(a^{m})^{n} = a^{mn}$$

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$

$$(a + b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a - b)^{2} = a^{2} - 2ab + b^{2}$$

$$a^{2} - b^{2} = (a - b)(a + b)$$

Replacing a by \sqrt{a} and b by \sqrt{b} above, we get $(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b}) = a - b$

2. SIMPLIFYING SQUARE ROOTS

If you have a square root in the denominator, then you can use the following trick to simplify the expression:

 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$

We also discussed solving equations where the left hand side is factored as a product of linear factors such as (x - 1)(x + 3) = 0

3. Homework Problems

- 1. Compute without calculator 199×201 .
- **2.** Find the following square roots. $\sqrt{16}$
 - (a) $\sqrt{16} =$ (b) $\sqrt{10,000} =$

(c)
$$\sqrt{10^8} =$$

(d) $\sqrt{50} =$
(e) $\sqrt{4a^3} =$
(f) $\sqrt{81a^4b^7} =$
3. Simplify
(a) $\sqrt{7}\sqrt{7}\sqrt{7}\sqrt{7}\sqrt{7} =$
(b) $\sqrt[3]{3}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{3}} =$
(c) $(\sqrt{17} - \sqrt{11})(\sqrt{17} + \sqrt{11}) =$
(d) $(\sqrt{7} - \sqrt{2})(\sqrt{7} - \sqrt{2}) =$
4. Simplify
(a) $7\sqrt{5} + 3\sqrt{5}$
(b) $-5\sqrt{8} + 3\sqrt{8} - 2\sqrt{8} + 4\sqrt{8}$
(c) $\frac{\sqrt{15}}{\sqrt{5}}$; $\sqrt{\frac{3}{10}} \cdot \sqrt{\frac{22}{21}}$; $\sqrt{\frac{7^2 \cdot 11}{5^4 \cdot 5^2}}$

- 5. Simplify the following equations, writing them in the form $\frac{f}{g}$, where f,g are expressions in x.
 - (a) $\frac{1}{x+1} \frac{1}{x-1}$ (b) $\left(1 + \frac{1}{x}\right) \div (x+1)$ (c) $\left(1 + \frac{1}{x}\right) \div \left(1 - \frac{1}{x}\right)$

(d) $\sqrt{7x^2}; \sqrt{\frac{4x^4}{9y^2}}$

- 6. Factor (i.e. write as a product) the following expressions:
 - (a) $a^2 + 4ab + 4b^2$
 - (b) $a^2 2a + 1$
 - (c) $a^4 b^4$ [Hint: $a^4 = (a^2)^2$
 - (d) $x^2 7$ [Hint: $7 = (\sqrt{7})^2$
- 7. Write each of the following expressions in the form $a + b\sqrt{3}$, with rational a, b: (a) $(1 + \sqrt{3})^2$

(b)
$$\frac{1}{\sqrt{3}}$$

(c)
$$\frac{1+\sqrt{3}}{\sqrt{3}}$$

(d)
$$\frac{1+2\sqrt{3}}{\sqrt{3}}$$

- 8. Solve the equation (x − 1)² = 6
 *9. Is √2 a rational number? [Hint: Write √2 = m/n, where m,n are irreducible. Then square it. Can you show that m and n are not irreducible?]