MATH 6: HANDOUT 26 SQUARE ROOTS

The square root of a number a is a number whose square is equal to a. For example the square root of 25 is 5 , because $5^{2}=25$

The square root of number a is commonly denoted by \sqrt{a}.
Note that $\sqrt{a b}=\sqrt{a} \sqrt{b}$, but $\sqrt{a+b}$ is not equal to $\sqrt{a}+\sqrt{b}$.
Another way to think about radicals is using exponents laws.
$a^{\frac{1}{2}}=\sqrt[2]{a}=\sqrt{a}$
$a^{\frac{1}{3}}=\sqrt[3]{a}$, this is called the cubic root of a
$a^{\frac{1}{n}}=\sqrt[n]{a}$, in general this is called - the n-th root of a (or a radical n)

1. Review Algebra

$$
\begin{gathered}
a^{0}=1 \\
a^{m} a^{n}=a^{m+n} \\
\frac{a^{m}}{a^{n}}=a^{m-n} \\
(a b)^{n}=a^{n} b^{n} \\
\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \\
a^{-n}=\frac{1}{a^{n}} \\
\left(a^{m}\right)^{n}=a^{m n} \\
\sqrt{a b}=\sqrt{a} \cdot \sqrt{b} \\
(a+b)^{2}=a^{2}+2 a b+b^{2} \\
(a-b)^{2}=a^{2}-2 a b+b^{2} \\
a^{2}-b^{2}=(a-b)(a+b)
\end{gathered}
$$

Replacing a by \sqrt{a} and b by \sqrt{b} above, we get $(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})=a-b$

2. Simplifying Square Roots

If you have a square root in the denominator, then you can use the following trick to simplify the expression:
$\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}$
We also discussed solving equations where the left hand side is factored as a product of linear factors such as $(x-1)(x+3)=0$

3. Homework Problems

1. Compute without calculator 199×201.
2. Find the following square roots.
(a) $\sqrt{16}=$
(b) $\sqrt{10,000}=$
(c) $\sqrt{10^{8}}=$
(d) $\sqrt{50}=$
(e) $\sqrt{4 a^{3}}=$
(f) $\sqrt{81 a^{4} b^{7}}=$
3. Simplify
(a) $\sqrt{7} \sqrt{7} \sqrt{7} \sqrt{7} \sqrt{7}=$
(b) $\sqrt[3]{3} \sqrt[3]{3} \sqrt[3]{3} \sqrt[3]{3} \sqrt[3]{3} \sqrt[3]{3}=$
(c) $(\sqrt{17}-\sqrt{11})(\sqrt{17}+\sqrt{11})=$
(d) $(\sqrt{7}-\sqrt{2})(\sqrt{7}-\sqrt{2})=$
4. Simplify
(a) $7 \sqrt{5}+3 \sqrt{5}$
(b) $-5 \sqrt{8}+3 \sqrt{8}-2 \sqrt{8}+4 \sqrt{8}$
(c) $\frac{\sqrt{15}}{\sqrt{5}} ; \sqrt{\frac{3}{10}} \cdot \sqrt{\frac{22}{21}} ; \sqrt{\frac{7^{2} \cdot 11}{5^{4} \cdot 5^{2}}}$
(d) $\sqrt{7 x^{2}} ; \sqrt{\frac{4 x^{4}}{9 y^{2}}}$
5. Simplify the following equations, writing them in the form $\frac{f}{g}$, where f,g are expressions in x.
(a) $\frac{1}{x+1}-\frac{1}{x-1}$
(b) $\left(1+\frac{1}{x}\right) \div(x+1)$
(c) $\left(1+\frac{1}{x}\right) \div\left(1-\frac{1}{x}\right)$
6. Factor (i.e. write as a product) the following expressions:
(a) $a^{2}+4 a b+4 b^{2}$
(b) $a^{2}-2 a+1$
(c) $a^{4}-b^{4}\left[\right.$ Hint: $a^{4}=\left(a^{2}\right)^{2}$
(d) $x^{2}-7\left[\right.$ Hint: $7=(\sqrt{7})^{2}$
7. Write each of the following expressions in the form $a+b \sqrt{3}$, with rational a, b :
(a) $(1+\sqrt{3})^{2}$
(b) $\frac{1}{\sqrt{3}}$
(c) $\frac{1+\sqrt{3}}{\sqrt{3}}$
(d) $\frac{1+2 \sqrt{3}}{\sqrt{3}}$
8. Solve the equation $(x-1)^{2}=6$
*9. Is $\sqrt{2}$ a rational number? [Hint: Write $\sqrt{2}=\frac{m}{n}$, where m, n are irreducible. Then square it. Can you show that m and n are not irreducible?]
