Math 4d. Class work 23.

1. Exponent.

Exponentiation is a mathematical operation, written as $\boldsymbol{b}^{\boldsymbol{n}}$, involving two numbers, the base b and the exponent n. When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, $\boldsymbol{b}^{\boldsymbol{n}}$ is the product of multiplying n bases:

$$
b^{n}=\underbrace{b \times \cdots \times b}_{n}
$$

In that case, $\boldsymbol{b}^{\boldsymbol{n}}$ is called the n-th power of b, or b raised to the power n.

Properties of exponent:

If the same base raised to the different power and then multiplied:

$$
b^{3} \times b^{4}=(b \times b \times b) \times(b \times b \times b \times b)=b \times b \times b \times b \times b \times b \times b=b^{3+4}=b^{7}
$$

Or in a more general way:

$$
b^{n} \times b^{m}=b^{n+m}
$$

If the base raised to the power of n then raised again to the power of m :

$$
\begin{aligned}
& \left(b^{2}\right)^{3}=(b \cdot b)^{3}=(b \cdot b) \cdot(b \cdot b) \cdot(b \cdot b)=b^{2 \cdot 3}=b^{6} \\
& \left(b^{n}\right)^{m}=b^{n \cdot m} \\
& b^{1}=b ; \\
& \quad b^{0}=1, \text { for any } b \text { exept } 0 .
\end{aligned}
$$

If two different bases raised to the same power, then:

$$
\begin{gathered}
(a \cdot b)^{3}=(a \cdot b) \cdot(a \cdot b) \cdot(a \cdot b)=a \cdot a \cdot a \cdot b \cdot b \cdot b=a^{3} b^{3} \\
(a \cdot b)^{n}=a^{n} b^{n}
\end{gathered}
$$

The exponent indicates how many copies of the base are multiplied together. For example, $3^{5}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=243$. The base 3 appears 5 times in the repeated multiplication, because the exponent is 5 . Here, 3 is the base, 5 is the exponent, and

243 is the power or, more specifically, the fifth power of 3,3 raised to the fifth power, or 3 to the power of 5 .

$$
\begin{aligned}
& 2^{3} \cdot 2^{2}=2^{3+2}=2^{5} \\
& 5^{2} \cdot 5= \\
& 2^{5} \cdot 2^{3} \cdot 2= \\
& \left(2^{3}\right)^{4}=2^{3} \cdot 2^{3} \cdot 2^{3} \cdot 2^{3}=2^{3 \cdot 4}=2^{12} \\
& \left(3^{7}\right)^{2}= \\
& \left(n^{5}\right)^{3}=
\end{aligned}
$$

1. Write the following expressions in a shorter way:

$$
\text { Example: } 7 \cdot 7 \cdot 7 \cdot 8 \cdot 8 \cdot 8 \cdot 8 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9=7^{3} \cdot 8^{4} \cdot 9^{5}
$$

$$
2 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 7 \cdot 7
$$

$$
\underbrace{3 \cdot 3 \cdot \ldots \cdot 3}_{n \text { times }} \cdot \underbrace{5 \cdot 5 \cdot \ldots \cdot 5}_{\text {m times }}
$$

$\underbrace{(-4) \cdot(-4) \cdot \ldots \cdot(-4)}_{k \text { times }} \cdot \underbrace{6 \cdot 6 \cdot \ldots \cdot 6}_{l \text { times }}$
2. Compare the numbers:
a. $5^{3} \quad 5 \cdot 3$
b. $12^{2} \quad 12 \cdot 2$
c. $2^{5} 5^{2}$
d. $3^{4} \quad 4^{3}$
e. $5^{3} \quad 5 \cdot 3$
f. $2^{4} \quad 4^{2}$

