Math 4d, Homework 8.

- 1. Do the prime factorization of the numbers 396, 315, 539. Example: $945 = 3 \cdot 3 \cdot 3 \cdot 5 \cdot 7$
- 2. Julia's father's step is 70 cm long, Julia's step is 20 cm smaller. They start walking making their first step simultaneously. How far they should go to have next simultaneous step?
- 3. Evaluate:

а.	$\frac{1}{3} + \frac{1}{4};$	b. $\frac{2}{7} + \frac{3}{14};$	C.	$\frac{7}{8} - \frac{5}{8};$
d.	$\frac{1}{2} + \frac{5}{6};$	$e. \frac{7}{24} + \frac{1}{4};$	f.	$\frac{5}{6} + \frac{3}{10}$

4.

- a. What is bigger, the number c or $\frac{2}{3}$ of the number c? Why?
- b. What is bigger, the number b or $\frac{3}{2}$ of the number b? Why?
- c. What is bigger, $\frac{2}{3}$ of a number *m* or $\frac{3}{2}$ of a number *m*? Why?

4.

- a. $\frac{1}{7}$ of all students in the class is 4. How many students are there in the class? b. $\frac{2}{5}$ of all students in a class is 10. How many students are there in a class?
- 5. In the school cafeteria there are 12 tables. There are 10 seats at each table. At the lunch time $\frac{4}{5}$ of all sits were occupied by students. How many students were in the cafeteria?
- 6. Compute by the most convenient way:

 $\left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}\right) + \left(\frac{2}{3} + \frac{2}{4} + \frac{2}{5}\right) + \left(\frac{3}{4} + \frac{3}{5}\right) + \frac{4}{5}.$

- 7. Peter spent 2 hours doing his homework. $\frac{1}{3}$ of this time, he spent doing his math homework and $\frac{1}{4}$ of the remaining time he spent on the history assignment. How many minutes did Peter spent on his history assignment and how many minutes did he spent doing his math homework?
- 8. Write the expression for the following problems:
 - a. 3 packages of cookies cost *a* dollars. How many dollars do 5 of the same packages cost?
 - b. 5 bottles of juice cost b dollars. How many bottles can one buy with c dollars?
- 9. Fill up the empty places for the equality to hold (distributive property)

10. Copy the figure:

