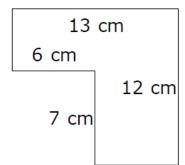
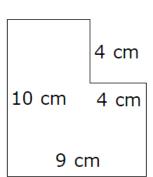


## Math 3 Homework 23 Part I

1 Calculate.


3


 $4 \text{ m } 2 \text{ dm } 6 \text{ cm} + 1 \text{ m } 5 \text{ dm } 2 \text{ cm} = \_ \text{ m } \_ \text{ dm } \_ \text{ cm}$ 

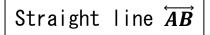
 $9 \text{ m } 8 \text{ dm } 3 \text{ cm} - 6 \text{ m } 2 \text{ dm } 1 \text{ cm} = \underline{\hspace{1cm}} \text{ m } \underline{\hspace{1cm}} \text{dm } \underline{\hspace{1cm}} \text{ cm}$ 



Find the perimeter and the area of the following shapes. Try to use the most optimal way to calculate. Show your work.

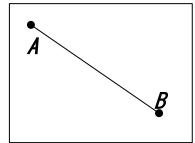


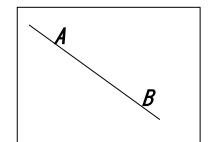


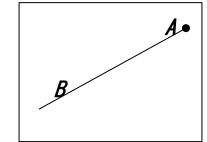

Perimeter = \_\_\_\_\_

Area = \_\_\_\_\_

Perimeter = \_\_\_\_\_


Area = \_\_\_\_\_


Connect the names with the appropriate drawings.




Segment  $\overline{AB}$ 

Ray  $\overrightarrow{AB}$ 







4

Use a ruler.

- a) Plot straight line  $\overrightarrow{NQ}$
- b) Plot ray  $\overrightarrow{RT}$
- c) Label the intersection **M**.
- d) Plot segment  $\overline{MF}$ .



• **F** 

<u>Use a rules and a compass</u>. Draw a line segment  $\overline{AB}$ , place a point C on the segment between points A and B. Write down the name of each line segment you get. Place another point D and D' on the same distance from point C (use a compass to put points D and D' on the same distance from point C - any distance of your choice). Point D should be between points A and C, point D' should be between

points C and B. between Name all line segments you get.



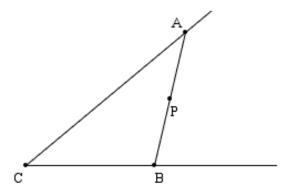
A

В

a) Draw a line segment  $\overline{AB}$ .

Draw another line segment  $\overline{CD}$  in a way that the intersection between  $\overline{AB}$  and  $\overline{CD}$  is a point K.

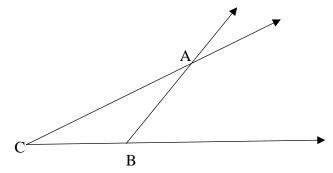
b) Draw a line segment  $\overline{AB}$  again below. Draw another line segment  $\overline{EF}$  in a way that the intersection between  $\overline{AB}$  and  $\overline{EF}$  is a line segment  $\overline{EB}$ .


## HW 23 Part I

7

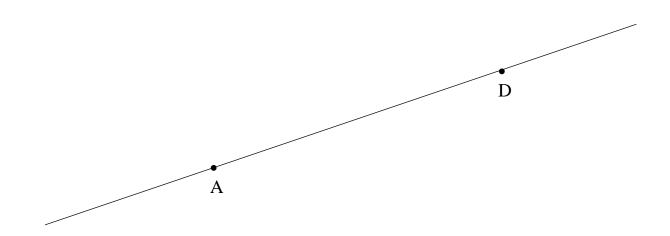
Interior and Exterior of an Angle.

Does point P belong to an  $\angle ACB$ ?


Does a segment  $\overline{AB}$  belong to an  $\angle ACB$ ?



8.


Do all points of a ray  $\overrightarrow{BA}$  belong to the  $\angle ACB$ ?

- a) Take a blue pencil and follow the part of the ray  $\overrightarrow{BA}$  which is inside the angle  $\angle ACB$
- b) Take a green pencil and follow the part of the ray  $\overrightarrow{BA}$  which is outside the angle  $\angle ACB$



9.

Use a compass and the ruler to find a midpoint between points A and D.



## HW 23 Part I

Geometry Review

10

Practice to draw concentric circles. Place a center  $\mathbf{A}$  in the middle of the page. Using a compass, draw 3 circles – with a radius 7 cm, 5 cm and 3 cm. Name each circle. What is the diameter of each circle?

11

- a) Use a compass to draw a circle centered at a given point  $\bf A$  and passing through another point  $\bf B$  (choose your own compass opening).
- b) Use a straightedge and connect the point  $\bf B$  on the circle to the center  $\bf A$  to make a radius  $\bf r$ .
- c) Mark another point C at any place between points A and B. Using a compass draw a circle with a radius  $\overline{AC}$ .
- d) Mark one more point **D** at any place between points **A** and **C**. Using a compass draw a circle with a radius  $\overline{AD}$ .

• A

12

The  $\angle$  ACB is 43<sup>0</sup>. How big (in degrees) will be a complementary angle? How big (in degrees) will be a supplementary angle?

Complementary angle = \_\_\_\_\_

supplementary angle = \_\_\_\_\_

13

The square with a side equal to 1m cut down on the smaller squares with a side of 1 cm. Then all small squares are put along the straight line one by one. The line will have a width equals to 1cm. How long is the line going to be?