Math 3 Homework 17 Part1

Use distributive property to do multiplication (substitute one of the factors by sum or difference the way most convenient for you)
$17 \times 7=$ \qquad
$65 \times 5=$ \qquad
$108 \times 8=$ \qquad
$14 \times 25=$ \qquad
$110 \times 4=$ \qquad
$19 \times 5=$ \qquad

Solve the following equations and check your answers:

$$
800+x \div 6=786
$$

$$
(4 \times x) \div 10=280
$$

$$
\boldsymbol{b} \times 18+312=402
$$

Use the commutative and associative property and present the answers in the most simplified form:

$$
\begin{array}{ll}
107+(23+505)= & 229+(104-19)= \\
(607+432)-407= & (33 \times 10) \times 3=
\end{array}
$$

Write the correct sign <, > or $=$ to make these statements correct:
$(8+5)-7 \ldots(8+7)-5$
$2 \times(3+4) \ldots(2 \times 3)+4$
$(10 \times 5) \div 2 \ldots 10 \times(5 \div 2)$

5 Put the parenthesis to the following equalities to make them correct.
a) $6+2 \times 5=40$
b) $3 \times 4+2=18$
c) $3+4 \times 2+4=42$
d) $4+3+2 \times 2=18$

Report the time you spent: \qquad

7.

Write down an expression for each problem:
a) x brown ducks and y gray ducks are digging the warms. All ducks were divided into several teams with 5 ducks in each team. How many different teams can be organized?
b) One squirrel has a acorns. A second squirrel has twice as many acorns as the first one. They decided to hide their acorns in two different places. How many acorns are going to be hide in each place?
c) Caterpillar had traveled b meters, and this is c meters less than Snail. How many meters did they travel together? \qquad
a) Calculate and express in meters, dm and cm :

$$
\begin{aligned}
& 9 \mathrm{~m} 12 \mathrm{~cm}+2 \mathrm{~m} 98 \mathrm{~cm}-5 \mathrm{~m} 9 \mathrm{~cm}= \\
& 10 \mathrm{~m}-24 \mathrm{dm}-4 \mathrm{~m} 85 \mathrm{~cm}=
\end{aligned}
$$

b) Compare:
$25 \mathrm{dm} \ldots \quad 250 \mathrm{~cm}$

7 dm 8 cm \qquad 78 cm

1 m 15 cm \qquad 11 dm 5 cm

3m \qquad 40dm 68dm \qquad 6 m 80 cm 609 cm \qquad 69 dm

9 There are 95 stamps in two albums. After 35 stamps were removed from one of the albums, each album had an equal number of stamps. How many stamps were in each album at the beginning?
\qquad
\qquad
Answer: \qquad stamps were in each album at the beginning.

10 The area of the rectangle is $36 \mathrm{~m}^{2}$. How long can be the sides of such a rectangle? Fill in the possible values of \boldsymbol{a} and \boldsymbol{b} (sides of the rectangle) and perimeters for each rectangle with an area of $36 \mathrm{~m}^{2}$.

	$36 \mathrm{~cm}^{2}$				
\boldsymbol{a}					
\boldsymbol{b}					
P					

11
a) Find the area of a square if it's perimeter equals 80 cm . Show your work!

A = \qquad
b) Find the area of a rectangle if it's perimeter equals 10 cm and it's width is 2 cm . Show your work! A = \qquad

Use a compass and a ruler to plot:
a) a circle with a center in a point \mathbf{O} and the radius $=4 \mathrm{~cm}-\operatorname{Circ}(\mathbf{O}, 4 \mathrm{~cm})$
b) $\operatorname{Circ}(\mathbf{O}, 5 \mathrm{~cm})$
c) $\operatorname{Circ}(\mathbf{O}, 6 \mathrm{~cm})$
d) $\operatorname{Circ}(\mathbf{W}, 4 \mathrm{~cm})$
e) $\operatorname{Circ}(\mathbf{R}, 3 \mathrm{~cm}$

- W

0

Use a straight edge to plot straight lines WR, OR, WO. Make sure these lines continue beyond the points O, R, and W .

