
Unit 3- Lesson 8

Chemistry 0

 Organic chemistry is a special branch of chemistry that singles out just one element for special consideration- Carbon.

<u>Difference between Organic and Inorganic Compounds</u>

Organic Compounds	Inorganic Compounds
Characterized by the presence of carbon atoms	Most do not have carbon atoms in them
More volatile and highly inflammable	Not inflammable and non-volatile in nature
Insoluble in water	Soluble in water
Mainly found in most of the living things	Found in non-living things
Examples include fats, nucleic acids, sugars, enzymes, proteins and hydrocarbon fuels	Examples include non-metals, salts, metals, acids, and bases
Biological and more complex in nature	Mineral and not much complexity in nature

Common Organic Molecules

Name	Chemical Formula	Structure
Methane	CH ₄	4
Acetylene	C_2H_2	-0=0-
Ethanol	CH ₃ CH ₂ OH	
Chloroform	CHCl ₃	
Acetic Acid	CH ₃ COOH	\$ -4.
Formaldehyde	H ₂ CO	2000
Glycine	H ₂ NCH ₂ COOH	
Benzene	C_6H_6	

Class of Organic Molecules

- Hydrocarbons: contain only hydrogen and carbon.
 They are all very nonpolar, flammable, and similar in both appearance and touch.
 - Alkanes
 - Alkenes
 - Alkynes
 - Aromatics

- The simplest organic molecules are the alkanes which have only single bonds and contain only carbon and hydrogen.
- The shortest alkane molecule is methane, CH_{4} .
- The small alkanes are gases, the medium ones (from pentane on) are liquids, and the larger ones are solids.
- All the alkanes are very nonpolar. The liquids are gasoline-like or oily and act as solvents for nonpolar substances. The solids are waxes or plastics.
- They all burn in air and are often used as fuels.

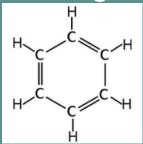
Alkanes

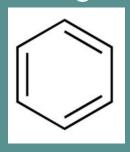
The First 10 Straight-Chain Alkanes

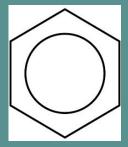
Name	Molecular Formula (C _n H _{2n+ 2})	Condensed Structural Formula	Properties
methane	CH ₄	CH ₄	gas
ethane	C_2H_6	CH ₃ CH ₃	gas
propane	C_3H_8	CH ₃ CH ₂ CH ₃	gas
butane	C_4H_{10}	CH ₃ CH ₂ CH ₂ CH ₃	gas
pentane	C_5H_{12}	$\mathrm{CH_{3}CH_{2}CH_{2}CH_{3}}$	liquid
hexane	C_6H_{14}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	liquid
heptane	C ₇ H ₁₆	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	liquid
octane	C ₈ H ₁₈	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	liquid
nonane	C_9H_{20}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	liquid
decane	C ₁₀ H ₂₂	CH ₃ CH ₂ CH ₃	liquid

- An alkene is any organic molecule with a carbon-tocarbon double bond.
- An alkyne is any molecule with a carbon-to-carbon triple bond.
- The smaller alkenes and alkynes are gases, the medium ones are nonpolar liquids, and the large ones are waxy solids or plastics.
- They burn in air. Gasoline is a mixture of many organic molecules including large amounts of both alkanes and alkenes.

Alkenes (a few common examples)


Name	Formula	Structure	Uses
ethene (ethylene)	C ₂ H ₄	H H C=C H H	Plant hormone that causes ripening of fruit
propene (propylene)	C ₃ H ₆	H $C=C$ CH_3	Monomer used to make polypropylene, a common polymer
1-butene (butylene)	C ₄ H ₈	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Monomer used to make polybutylene, a common polymer
2-butene	C ₄ H ₈	$H_3\overset{1}{\overset{4}{\text{C}}} = \overset{4}{\overset{6}{\text{C}}} H_3$	Used in the production of gasoline


Alkynes (a few common examples)


Name	Formula	Structure	Uses
ethyne (acetylene)	C ₂ H ₂	H—C≡C—H	Used in welding and cutting torches
propyne	C ₃ H ₄	H H—C≡C−C—H I H	Used in welding torches
1-butyne	C ₄ H ₆	H H H—C≡C−C−C−H H H	Used in the synthesis of organic compounds
2-butyne	C ₄ H ₆	H ₃ C−C≡C−CH ₃	Used in the synthesis of organic compounds

- The last and most complex of the hydrocarbons are the aromatic molecules.
- The simplest aromatic molecule is benzene.
- It is a ring of six carbon atoms and six hydrogens in the shape of a hexagon. There are three double bonds alternating with three single bonds around the ring.

- Organic chemistry deals with carbon containing compounds.
- Alkanes, alkenes, alkynes, and aromatics are groups of organic molecules that contain only hydrogen and carbon.