Lesson 16

Chemistry 0

Week 16 HW Review

1. True or false: Pure water is an example of a neutral substance.
2. When an acid and a base react, the reaction is called a reaction.
3. The products of neutralization reactions are water and a
\qquad .

Week 16 HW Review

4. Which of the following is a salt?
A. $\mathrm{H}_{2} \mathrm{O}$
B. HCl
C. KOH
D. KCl
5. On the pH scale, $\mathrm{a} \mathrm{pH}=1$ would be:
A. Acidic
B. Basic
C. Neutral

Week 16 HW Review

6. Of the following solution, select the one that is most acidic:
A. Milk ($\mathrm{pH}=6.5$)
B. Tomato juice $(\mathrm{pH}=4)$
C. Bleach $(\mathrm{pH}=11)$
D. Coffee $(\mathrm{pH}=5)$
7. Which of the following reactions represents an acid-base neutralization reaction?
A. $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{KI}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{KNO}_{3}+\mathrm{PbI}_{2}$
C. $\mathrm{H}_{2}+\mathrm{NO} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
D. $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
8. Which of the following reactions represents an acid-base neutralization reaction?

Acid- Base Titration

An acid with indicator showing red color, no base added.

Eventually the solution changes color completely as the acid is neutralized. \qquad

Plot of an Acid- Base Titration

How to find out the concentration of an unknown acid or base

Molecular Weight of Baking Soda

Molecular weight of baking soda $\left(\mathrm{NaHCO}_{3}\right)$
$=(1 \times 12 \mathrm{amu})+(3 \times 16 \mathrm{amu})+(1 \times 23 \mathrm{amu})+(1 \times 1 \mathrm{amu})=84 \mathrm{amu}$

Atomic Mass Unit (amu) and Mole

- 1 amu (atomic mass unit) $=1.67 \times 10^{-24}$ grams
$=1 / 12$ th the mass of the carbon atom
- 1 mole $=602,200,000,000,000,000,000,000$

$$
=6.022 \times 10^{23} \longrightarrow \text { Avogadro Constant }
$$

Number of moles

$\times 6.02 \times 10^{23}$
$\div 6.02 \times 10^{23}$

Number of particles

Moles and weights

- One mole of carbon atoms = 12 grams
- One mole of hydrogen atoms = 1 gram
- One mole of sodium atoms $=23$ grams
- One mole of oxygen atoms = 16 grams

Molecular weight of baking soda $\left(\mathrm{NaHCO}_{3}\right)$
$=(1 \times 12 \mathrm{amu})+(3 \times 16 \mathrm{amu})+(1 \times 23 \mathrm{amu})+(1 \times 1 \mathrm{amu})=84 \mathrm{amu}$

One mole of baking soda molecules = 84 grams

Acid-Base Titration

> Vinegar
> $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
(Acetic Acid) (Sodium Bicarbonate) (Sodium Acetate)

One mole of sodium bicarbonate will neutralize one mole of vinegar!

Acid- Base Titration

An acid with indicator showing red color, no base added.

Eventually the solution changes color completely as the acid is neutralized. \qquad

Plot of an Acid- Base Titration

Acid Base Neutralization Questions

- If it takes 84 grams of baking soda to neutralize a beaker of acetic acid, how many moles of acetic acid do you have?
- If it takes 42 grams of baking soda to neutralize a beaker of acetic acid, how many moles of acetic acid do you have?
- If it takes 168 grams of baking soda to neutralize a beaker of acetic acid, how many moles of acetic acid do you have?

Solutions

- We know that one mole of baking soda molecules $=84$ grams
- Chemical equation for the reaction is: $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
- To convert grams to moles we use a conversion factor, which states mathematically the relationship between two quantities. For baking soda, we can write the conversion factor as:
$\frac{1 \text { mole }}{84 \text { grams }} \quad$ or $\quad \frac{84 \text { grams }}{1 \text { mole }}$

Solutions (cont.)

- If it takes 84 grams of baking soda to neutralize a beaker of acetic acid, how many moles of acetic acid do you have?

$$
84 \text { grams } \times \frac{1 \text { mole }}{84 \text { grams }}=1 \text { mole }
$$

There is 1 mole of acetic acid that is neutralized by 84 grams of baking soda.

Solutions (cont.)

- If it takes 42 grams of baking soda to neutralize a beaker of acetic acid, how many moles of acetic acid do you have?

$$
42 \text { grams } x \frac{1 \text { mole }}{84 \text { grams }}=0.5 \text { mole }
$$

There is 0.5 mole of acetic acid that is neutralized by 42 grams of baking soda.

Solutions (cont.)

- If it takes 168 grams of baking soda to neutralize a beaker of acetic acid, how many moles of acetic acid do you have?

$$
168 \text { grams } \times \frac{1 \text { mole }}{84 \text { grams }}=2 \text { moles }
$$

There are 2 moles of acetic acid that are neutralized by 168 grams of baking soda.

Concentration of solutions

- The most common unit of concentration is molarity (M).
- The molarity (M) is defined as the number of moles of solute present in exactly 1 L of solution:

Concentration (Molarity) $=\frac{\text { Amount of Solute (mol) }}{\text { Volume of the solution (L) }}$
Example:
If we know that the volume of the 1 mole of acetic acid is 1 L, how much is the concentration of the acetic acid solution?

Concentration $=1 \mathrm{~mol} / 1 \mathrm{~L}=1 \mathrm{~mol} / \mathrm{L}=1 \mathrm{M}$

Example question

Q: A 60 mL HCl solution is titrated with 25 mL of a 0.60 M KOH solution. What is the concentration of the HCl solution?

A: $\mathrm{HCl}+\mathrm{KOH} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{KCl}$
1 mol HCl will neutralize 1 mol KOH $60 \mathrm{~mL} \times$ concentration of $\mathrm{HCl}=25 \mathrm{~mL} \times 0.60 \mathrm{M}$ Concentration of $\mathrm{HCl}=25 \times 0.60 / 60=0.25 \mathrm{M}(\mathrm{mol} / \mathrm{L})$

