Lesson 11

Chemistry 0

Last week's HW Review

- Please count the atoms for the following compounds:

- NH_{3} One nitrogen atom and three hydrogen atoms.
- $\mathrm{H}_{2} \mathrm{O}$

Two hydrogen atoms and one oxygen atom.

- $\quad \mathrm{C}_{3} \mathrm{H}_{8}$ Three carbon atoms and eight hydrogen atoms.
- $\mathrm{K}_{2} \mathrm{CO}_{3}$

Two potassium atoms, one carbon atom and three oxygen atoms.

- $\mathrm{Ca}(\mathrm{OH})_{2}$

One calcium atom, two oxygen atoms and two hydrogen atoms.

Last week's HW Review

- Please count the atoms for the following compounds:

- $\quad \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Three magnesium atoms, two phosphorus atoms and eight oxygen atoms.

- $4 \mathrm{H}_{2} \mathrm{O}$

Eight hydrogen atoms and four oxygen atoms.

- $5 \mathrm{Al}_{2} \mathrm{O}_{3}$

Ten aluminum atoms and fifteen oxygen atoms.

- $8 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Sixteen carbon atoms, forty eight hydrogen atoms and eight oxygen atoms.

- $3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

Six nitrogen atoms, twenty four hydrogen atoms, three sulfur atoms and twelve oxygen atoms.

Last week's HW Review

- Please balance the following chemical equations by showing the steps:
- $\mathrm{NO}+\mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}$

Nitrogen atoms: left 1 , right 1
Oxygen atoms: left 3, right 2
$2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$

- $\mathrm{Fe}+\mathrm{Cl}_{2} \rightarrow \mathrm{FeCl}_{3}$

Iron atoms: left 1 , right 1
Chlorine atoms: left 2, right 3
$2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}$

Last week's HW Review

- Please balance the following chemical equations by showing the steps:
- $\mathrm{C}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}$

Carbon atoms: left 1 , right 5
Hydrogen atoms: left 2, right 12
$5 \mathrm{C}+6 \mathrm{H}_{2} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}$

- $\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2}$ Iron atoms: left 1 , right 3
Hydrogen atoms: left 2, right 2
Oxygen atoms: left 1, right 4
$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$

Last week's HW Review

- Please balance the following chemical equations by showing the steps:
- $\mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ Carbon atoms: left 6 , right 1
Hydrogen atoms: left 14, right 2
Oxygen atoms: left 2, right 3
* Step 1: $\quad \mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+7 \mathrm{H}_{2} \mathrm{O}$
- Step 2: $\quad 2 \mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+14 \mathrm{H}_{2} \mathrm{O}$
- Step 3: $\quad 2 \mathrm{C}_{6} \mathrm{H}_{14}+19 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+14 \mathrm{H}_{2} \mathrm{O}$

Balancing Equation Rules

- Begin by balancing one element at a time.
- First balance elements that appear only once on each side of the equation.
- Balancing multi-element compounds before balancing single-element compound.
- Balance H and O atoms last.
- Use trial and error. Be patient.
- Add up all of the kinds of atoms on both sides of the equation to make sure it is completely balanced.

Types of Chemical Reactions

Basic types of chemical reactions:

1. Synthesis Reaction
2. Decomposition Reaction
3. Single-Replacement Reaction
4. Double-Replacement Reaction

Synthesis Reaction (also known as Combination Reaction)

It is a reaction in which two or more substances combine to form a single new substance.

$$
A+B \rightarrow A B
$$

Examples:

$$
\begin{gathered}
2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl} \\
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Decomposition Reaction

A decomposition reaction is a reaction in which a compound breaks down into two or more simpler substances.

$$
A B \rightarrow A+B
$$

Examples:

$$
\begin{gathered}
2 \mathrm{HgO} \rightarrow 2 \mathrm{Hg}+\mathrm{O}_{2} \\
2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
\end{gathered}
$$

Single-Replacement Reaction

A single-replacement reaction is a reaction in which one element replaces a similar element in a compound.

$$
A+B C \rightarrow A C+B
$$

Examples:

$$
\begin{gathered}
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2} \\
\mathrm{AgNO}_{3}+\mathrm{Cu} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}
\end{gathered}
$$

Double-Replacement Reaction

A double-replacement reaction is a reaction in which the positive and negative ions of two ionic compounds exchange places to form two new compounds.

$$
A B+C D \xrightarrow{\rightarrow} A D+C B
$$

Examples:

$$
\begin{aligned}
& \mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{AgCl} \\
& 2 \mathrm{KI}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{KNO}_{3}+\mathrm{PbI}_{2}
\end{aligned}
$$

Summary

- The law of conservation of matter states that matter is neither created or destroyed during chemical reaction.
- A chemical reaction occurs whenever bonds between atoms and molecules are created or destroyed.
- There are four basic types of chemical reactions.
- Evidences of chemical reactions include bubble formation, color changes, temperature changes and precipitation.

