Lesson 11

Chemistry 0

Fall 2020, L. Tracey Gao

- Please count the atoms for the following compounds:
 - NH₃ One nitrogen atom and three hydrogen atoms.
 - H₂O Two hydrogen atoms and one oxygen atom.
 - $\circ \quad \begin{array}{l} C_{3}H_{8} \\ \text{Three carbon atoms and eight hydrogen atoms.} \end{array}$
 - K₂CO₃ Two potassium atoms, one carbon atom and three oxygen atoms.
 - Ca(OH)₂ One calcium atom, two oxygen atoms and two hydrogen atoms.

- Please count the atoms for the following compounds:
 - $Mg_3(PO_4)_2$ Three magnesium atoms, two phosphorus atoms and eight oxygen atoms.
 - 4H₂O Eight hydrogen atoms and four oxygen atoms.
 - 5 Al₂O₃ Ten aluminum atoms and fifteen oxygen atoms.
 - \circ 8 C₂H₅OH

Sixteen carbon atoms, forty eight hydrogen atoms and eight oxygen atoms.

 \circ 3(NH₄)₂SO₄

Six nitrogen atoms, twenty four hydrogen atoms, three sulfur atoms and twelve oxygen atoms.

- Please balance the following chemical equations by showing the steps:
 - NO+ $O_2 \rightarrow NO_2$ Nitrogen atoms: left 1, right 1 Oxygen atoms: left 3, right 2 2NO+ $O_2 \rightarrow 2NO_2$
 - Fe+ $Cl_2 \rightarrow FeCl_3$ Iron atoms: left 1, right 1 Chlorine atoms: left 2, right 3 $2Fe+ 3Cl_2 \rightarrow 2FeCl_3$

- Please balance the following chemical equations by showing the steps:
 - $C + H_2 \rightarrow C_5 H_{12}$ Carbon atoms: left 1, right 5 Hydrogen atoms: left 2, right 12 $5C + 6H_2 \rightarrow C_5 H_{12}$
 - Fe+ $H_2O \rightarrow Fe_3O_4 + H_2$ Iron atoms: left 1, right 3 Hydrogen atoms: left 2, right 2 Oxygen atoms: left 1, right 4 3Fe+ $4H_2O \rightarrow Fe_3O_4 + 4H_2$

- Please balance the following chemical equations by showing the steps:
 - C_6H_{14} + $O_2 \rightarrow CO_2$ + H_2O Carbon atoms: left 6, right 1 Hydrogen atoms: left 14, right 2 Oxygen atoms: left 2, right 3
 - ♦ Step 1: $C_6H_{14} + O_2 \rightarrow 6CO_2 + 7H_2O$
 - ★ Step 2: $2C_6H_{14} + 0_2 \rightarrow 12CO_2 + 14H_2O$
 - ♦ Step 3: $2C_6H_{14}$ + 190_2 → $12CO_2$ + $14H_2O_2$

Balancing Equation Rules

- Begin by balancing one element at a time.
- First balance elements that appear only once on each side of the equation.
- Balancing multi-element compounds before balancing single-element compound.
- Balance H and O atoms last.
- Use trial and error. Be patient.
- Add up all of the kinds of atoms on both sides of the equation to make sure it is completely balanced.

Types of Chemical Reactions

- Basic types of chemical reactions:
- 1. Synthesis Reaction
- 2. Decomposition Reaction
- 3. Single-Replacement Reaction
- 4. Double-Replacement Reaction

Synthesis Reaction (also known as Combination Reaction)

It is a reaction in which two or more substances combine to form a single new substance.

 $A + B \rightarrow AB$

Examples:

 $2Na + Cl_2 \rightarrow 2NaCl$ $2H_2 + O_2 \rightarrow 2H_2O$

Decomposition Reaction

A decomposition reaction is a reaction in which a compound breaks down into two or more simpler substances. $AB \rightarrow A + B$

Examples:

 $2HgO \rightarrow 2Hg+O_2$ $2H_2O_2 \rightarrow 2H_2O+O_2$

Single-Replacement Reaction

A single-replacement reaction is a reaction in which one element replaces a similar element in a compound. $A + BC \rightarrow AC + B$

Examples:

 $Zn + 2HCI \rightarrow ZnCl_2 + H_2$ AgNO₃ + Cu \rightarrow Cu(NO₃)₂ + 2 Ag

Double-Replacement Reaction

A double-replacement reaction is a reaction in which the positive and negative ions of two ionic compounds exchange places to form two new compounds. $AB+CD \rightarrow AD+CB$

Examples:

 $NaCl + AgNO_{3} \rightarrow NaNO_{3} + AgCl$ $2Kl + Pb(NO_{3})_{2} \rightarrow 2KNO_{3} + Pbl_{2}$

Summary

- The law of conservation of matter states that matter is neither created or destroyed during chemical reaction.
- A chemical reaction occurs whenever bonds between atoms and molecules are created or destroyed.
- There are four basic types of chemical reactions.
- Evidences of chemical reactions include bubble formation, color changes, temperature changes and precipitation.