Universal Law of Gravitation

Any two objects with mass are going to feel a gravitational attraction to each other. The force that they will feel is given by Newton's Universal Law of Gravitation.

$$
\mathrm{F}_{\mathrm{G}}=\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}
$$

$$
\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \frac{\mathrm{~m}^{2}}{\mathrm{~kg}^{2}}
$$

Homework

Problem 1. Let's find the gravitational force we feel as we get close to a black hole with a mass similar to that of our sun:

$$
\mathrm{M}=2 \times 10^{30} \mathrm{~kg}
$$

Use Newton's universal law of gravitation to find the gravitational force felt by an astronaut of mass $m=100 \mathrm{~kg}$ (including space suit), at the distances shown in the table below.

