## Distance, Time, Speed

**d** – **distance** travelled

v – average speed

$$v = \frac{d}{\Delta t}$$

 $\Delta t = t_{final} - t_{initial}$  — travel **time**  $\Delta$  (Delta) stands for "change"

| Physical Quantity    | Standard Units<br>(metric system) | Other Units                                                                                                               |
|----------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Length, distance (d) | meter (m)                         | kilometer: 1km = 1000m<br>centimeter: 1cm = 0.01 m<br>1mile $\approx 1.6$ km; 1ft $\approx 0.3$ m; 1inch $\approx 2.5$ cm |
| Time ( <b>t</b> )    | second (s)                        | hour: 1hr = 3600 s                                                                                                        |
| Speed (s)            | m/s                               | km/hr, mile/hr (mph)<br>cm/s, km/s                                                                                        |

## **Homework 3**

**Problem 1.** Below is the schedule of "Acela" train that runs from Washington DC to New York City:

Washington (0 mi) 5:00 am
Baltimore (41 mi) 5:30 am
Philadelphia (135 mi) 6:30 am
New York (226 mi) 7:42 am



Find the average speed (in miles per hour, mph) for each of the three segments, and for the whole trip. Convert your results first to km/hr, and then to meters per second (m/s):

| Segment                | Speed (mph) | Speed (km/hr) | Speed (m/s) |
|------------------------|-------------|---------------|-------------|
| Washington-Baltimore   |             |               |             |
| Baltimore-Philadelphia |             |               |             |
| Philadelphia-NYC       |             |               |             |
| Washington-NYC         |             |               |             |

**Problem 2.** Measure speed of a moving object (toy, rain drop on a window, a pet...). Sketch your experiment, record your data and compute the result (both in the units in which you made your measurements, and in m/s).