Scientific Notation

Provides a compact way of expressing very large and very small numbers

Large numbers

$$2.0 \times 10^{6} = 2,000,000$$

Move the decimal point 6 places to the <u>right</u>

 $2.0 \times 10^{6} = 2000000$

Small numbers

$$7.0 \times 10^{-5} = 0.00007$$

Move the decimal point 5 places to the <u>left</u>

 $7.0 \times 10^{-5} = 0.00007$

Length scales in Nature

1 mm

1 km

Grain of sugar, small insects, etc

Brooklyn bridge

 10^{3} m

1 m

1 micron (1µm) Particles in smoke, milk, etc

(1-20 µm)

Bacteria (1-10 µm)

(2 -10 μm)

1 m

1000 km

Proton, neutron, atomic nucleus

10^{12} m = 1 billion km \approx 1 light hour

Homework 1

Problem 0.

Watch the documentary called "Cosmic Voyage" at <u>https://www.youtube.com/watch?v=GTiDfxATYa4</u> paying particular attention to the length scales displayed. Now, it is time for you to explore the different scales of the universe by going to <u>http://htwins.net/scale2/</u>

Problem 1. Write the following quantities using scientific notation:

1,340,000,000 kg =	
--------------------	--

 $540,000,000 \frac{\text{m}}{\text{s}} =$ _____

0.000,000,000,000,0015 in = _____

0.000,000,025 s = _____

Homework 1

Problem 2. Express the following quantities in decimal notation:

 $1.87 \times 10^7 lb =$ $7.681 \times 10^6 Å =$
 $6.8 \times 10^{-4} g =$ $9.979 \times 10^{-2} N =$

Problem 3. Carry out the following operations and express the result in scientific notation:

 $(2.1 \times 10^{4}) \times (5.6 \times 10^{2}) =$ $(7 \times 10^{5}) \times (2 \times 10^{-4}) =$ $\frac{4.4 \times 10^{4}}{2 \times 10^{4}} =$ $\frac{5 \times 10^{5}}{5 \times 10^{-5}} =$