

Homework

$Ca \rightarrow Ca(OH)_2 \rightarrow CaO \rightarrow CaSO_4$

$CaO + 2HCl \rightarrow CaCl_2 + H_2O$ 73 g × g

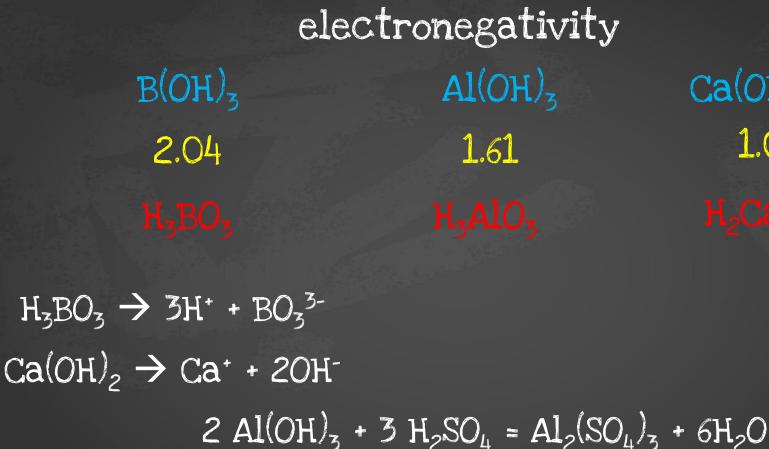
Mw Ca = 40 Mw Cl = 35.5 Mw H = 1

Mw HCI = Mw CaCI₂ =

$Na^+ Ca^{2+} O^{2-} K^+ SO_{\mu}^{2-} Cl^- NO_{3}^- PO_{\mu}^{3-}$ \mathcal{H}^{+} P^{5+} C^{4+} Mg^{2+} NH_{μ}^{+} I- $CO3^{2-}$ OH^{-} S6+ Acids Bases

1 1 Hydrogen 1.008				P	ERIC	DIC	ТАВ	BLE	OF T	HE E	ELEN						18 2 He Helium 4.003
2 Li Lithium 6.941	4 Be Beryllium 9.012											13 5 B Boron 10.811	6 Carbon 12.011	15 7 N Nitrogen 14.007	8 O Oxygen 15.999	17 9 F Fluorine 18.998	10 Ne Neon 20.180
3 Na Sodium 22.990	12 Mg Magnesium 24.305	3	4	5	6	7	8	9	10	11	12	13 Aluminum 26.982	14 Si Silicon 28.086	15 P Phosphorus 30.974	16 S Sulfur 32.066	17 Cl Chlorine 35.453	18 Argon 39.948
4 K Potassium 39.098	20 Ca Calcium 40.078	21 SC Scandium 44.956	22 Ti Titanium 47.88	23 V Vanadium 50.942	24 Cr Chromium 51.996	25 Mn Manganese 54.938	26 Fe Iron 55.845	27 CO Cobalt 58.933	28 Ni Nickel 58.693	29 Cu Copper 63.546	30 Zn Zinc 65.38	31 Gallium 69.723	32 Ge Germanium 72.631	33 As Arsenic 74.922	34 Se Selenium 78.971	35 Br Bromine 79.904	36 Kr Krypton 83.798
5 Rb Rubidium 85.468	38 Sr Strontium 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91.224	41 Nb Niobium 92.906	42 Mo Molybdenum 95.95	43 TC Technetium 98.907	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.906	46 Pd Palladium 106.42	47 Ag Silver 107.868	48 Cd Cadmium 112.414	49 In Indium 114.818	50 Sn Tin 118.711	51 Sb Antimony 121.760	52 Te Tellurium 127.6	53 Iodine 126.904	54 Xe Xenon 131.294
6 CS Cesium 132.905	56 Ba Barium 137.328	57-71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.948	74 W Tungsten 183.85	75 Re Rhenium 186.207	76 OS Osmium 190.23	77 I Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.967	80 Hg Mercury 200.59	81 TI Thallium 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.980	84 PO Polonium [208.982]	85 At Astatine 209.987	86 Rn Radon 222.018
87 Franciúm 223.020	88 Ra Radium 226.025	89-103	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	106 Sg Seaborgium [266]	107 Bh Bohrium [264]	108 HS Hassium [269]	109 Mt Meitnerium [278]	110 DS Darmstadtium [281]	111 Rg Roentgenium [280]	112 Cn Copernicium [285]	113 Nh Nihonium [286]	114 F Flerovium [289]	115 Mc Moscovium [289]	116 LV Livermorium [293]	117 TS Tennessine [294]	118 Og Oganesson [294]
		Lanti	nanum Cer	e F	dymium Neod	60 61 0 Prome .243 144.	m S thium Same	m E	u Gado			Dy Hol	IO E	ium Thu	m Y	b L	1 U tium .967
		Acti	39 9 C T nium Tho	o s h P rium Prota	Pa l Uran	2 9: J N nium Neptu .029 237.	B P P P P P P P P P P P P P P P P P P P	u A	95 C	n E	97 Bk (kelium Cali	98 Cf E fornium Einst	99 1 ES F teinium Ferr	00 10 mium Mende	01 1 Id N elevium Nob	02 1 O L elium Lawre	03 . ľ ncium 52]
				Alkali Metal	Alkaline Earth	Transition Metal	Basic Metal	Metallo	pid Nonm	etal Ha	logen	Noble Gas	anthanide	Actinide			

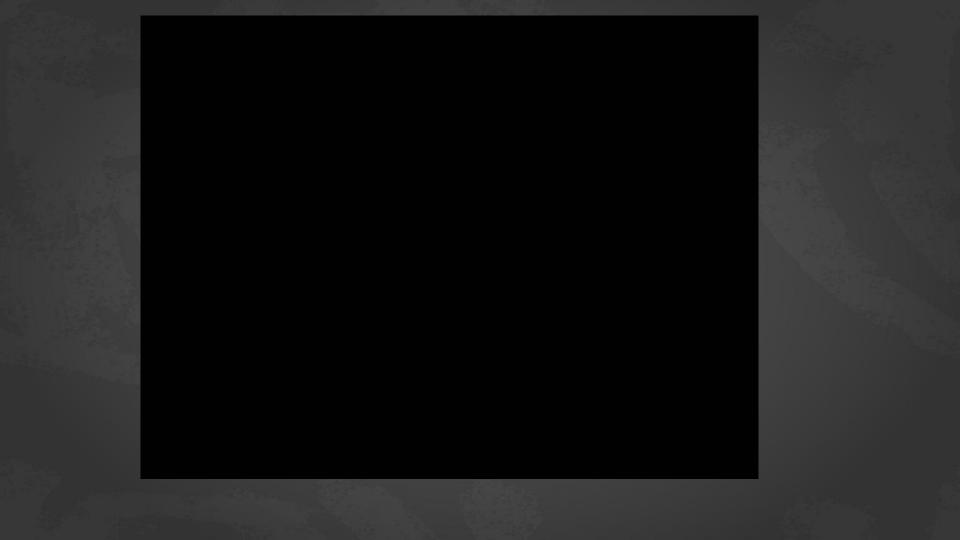
Amphoteric species


Amphoteric species are molecules or ions that can react as an acid as well as a base.

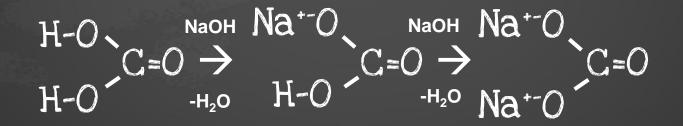
The word has Greek origins, amphoteroi (άμφότεροι) meaning "both".

Many metals (such as copper, zinc, tin, lead, aluminium, and beryllium) form amphoteric **oxides** or hydroxides.

PERIODIC TRENDS IN OXIDES


IA	IIA	IIIA	IVA	VA	VIA	VIIA
Li ₂ 0	BeO	B ₂ O ₃	CO2	N205		OF ₂
Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P4010	SO3	Cl ₂ 07
K ₂ 0	CaO	Ga ₂ O ₃	GeO2	As ₂ O ₅	SeO ₃	Br ₂ O ₇
Rb ₂ O	Sr0	In ₂ O ₃	SnO ₂	Sb ₂ O ₅	TeO ₃	I207
Cs ₂ 0	BaO	TI ₂ O ₃	PbO ₂	Bi ₂ O ₅	Po0 ₃	At ₂ 07

 $H_3AlO_3 + NaOH = NaH_2AlO_3 + H_2O$


 $Ca(OH)_{2}$ 1.0

NaAlO₂ or $Na[Al(OH)_{\mu}]$

Salts

HCI HCI HO-Mg-OH \rightarrow HO-Mg-Cl \rightarrow Cl-Mg-Cl -H₂O

This class uses the materials from the following books: "
Manyuilov and Rodionov "Chemistry for children and adults" Kuzmenko, Eremin, Popkov "Beginnings of chemistry" <u>http://school-collection.edu.ru</u> (experiments)