$$
\underset{0}{0^{\circ \circ}{ }_{0} \longrightarrow H_{2} \mathrm{O}=0.00}
$$

Chemistry - 101 Classes of chemical

04/25/21

$\stackrel{\sim}{\sim} 4 \mathrm{H}_{2} \mathrm{CO}(2 \mathrm{Mg})$

HW

$$
\stackrel{7.4 \mathrm{~g}}{\mathrm{Ca}(\mathrm{OH})_{2}}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

$\mathrm{Mw} \mathrm{Ca}=40$
$M w \mathrm{O}=16$
Mw S = 32
Mw H=1

Oxides

- Sulfur (IV) oxide SO_{2}
- Sulfur (VI) oxide SO_{3}
- Carbon (IV) oxide CO_{2}
- Calcium oxide CaO
- Iron (III) oxide $\mathrm{Fe}_{2} \mathrm{O}_{3}$
- Potassium oxide $\mathrm{K}_{2} \mathrm{O}$
- Magnesium oxide MgO

$$
\mathrm{S}+\mathrm{O}_{2}-----\mathrm{SO}_{2}-----\rightarrow \mathrm{S}+\mathrm{H}_{2} \mathrm{O}
$$

$4 \mathrm{Fe}+3 \mathrm{O}_{2}----\rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow--\rightarrow 4 \mathrm{Fe}+6 \mathrm{H}_{2} \mathrm{O}$

Acidic oxides

Acidic oxides can form acids:

$$
\begin{gathered}
\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2} \mathrm{SO}_{3} \text { (sulfurous acid) } \\
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2} \mathrm{SO}_{4} \text { (sulfuric acid) } \\
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2} \mathrm{CO}_{3} \text { (carbonic acid) } \\
\mathrm{N}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}=2 \mathrm{HNO}_{2} \text { (nitrous acid) } \\
\mathrm{SeO}_{3}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2} \mathrm{SeO}_{4} \text { (selenic acid) }
\end{gathered}
$$

B	C	N	O	F	Ne
Al	Si	P	${ }_{5}^{16}$	Cl	Ar
$\underset{6}{\text { Ga }}$	Ge	As	Se	Br	Kr
1 n	Sn	Sb	Te	1	Xe
	(1am				
$\stackrel{81}{11}$	Pb	Bi	Po	At	Rn
\%	2002	20aso			
Nh	$\stackrel{\text { IIf }}{\text { Fid }}$	Mc	Lv	Ts	Og
\%	(1zeo	(zase)	L2391		

Some acidic oxides do not react with water but all of them react with bases forming salts and water.

$$
\mathrm{SiO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \text { no reaction }
$$

$\mathrm{SiO}_{2}+2 \mathrm{NaOH}=\mathrm{Na}_{2} \mathrm{SiO}_{3}+\mathrm{H}_{2} \mathrm{O}$
(salt of hypothetical metasilicic acid)

Basic oxides Formed only by metals

Basic oxides can form bases:

$$
\begin{gathered}
\mathrm{Li}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}=2 \mathrm{LiOH} \\
\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O}=\mathrm{Ca}(\mathrm{OH})_{2}
\end{gathered}
$$

Many basic oxides are not soluble, but they can react with acids:

$$
\begin{aligned}
& \mathrm{ZnO}+\mathrm{H}_{2} \mathrm{O}=\text { no reaction } \\
& \mathrm{ZnO}+2 \mathrm{HCl}=\mathrm{ZnCl}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Basic oxides react with acids forming salts and water

Each basic oxide has a corresponding base:

$$
\begin{gathered}
\mathrm{MgO}-\mathrm{Mg}(\mathrm{OH})_{2} \\
\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Fe}(\mathrm{OH})_{3} \\
\mathrm{Na}_{2} \mathrm{O}-\mathrm{NaOH}
\end{gathered}
$$

Acids - a compound that has one or Several hydrogen atoms and a conjugate base in its molecule

Acids can replace hydrogen atoms by metal atoms

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{2}+\mathrm{Mg}=\mathrm{MgSO}_{4}+\mathrm{H}_{2} \\
& \mathrm{H}_{2} \mathrm{SO}_{2}+\mathrm{MgO}=\mathrm{MgSO}_{4}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Reactions of acidS

Acids react with bases forming salts and water:

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{SO}_{2}+\mathrm{Mg}(\mathrm{OH})_{2}=\mathrm{MgSO}_{4}+\mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{Ca}(\mathrm{OH})_{2}=\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

This class uses the materials from the following books:
"
Manyuilov and Rodionov "Chemistry for children and adults"
Kuzmenko, Eremin, Popkov "Beginnings of chemistry" http://school-collection.edu.ru (experiments)

