

water, hydrogen bond

Tetrahedron

N	0	F
$\xrightarrow{\text { 14000\% }}$	20999	F
P	${ }_{5}^{16}$	Cl
		$\underset{\substack{\text { chiomim } \\ 35,45}}{ }$

Chemical properties of water

1. Reactions with metals and non-metals with release of hydrogen
$2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2}+2 \mathrm{NaOH}$ $2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O}=$
$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O}=4 \mathrm{H}_{2}+\mathrm{Fe}_{3} \mathrm{O}_{4}$ (when heated)

$$
\begin{gathered}
\mathrm{C}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2}+\mathrm{CO} \\
\mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O}=4 \mathrm{H}_{2}+\mathrm{CO}_{2}
\end{gathered}
$$

2. water decomposes into oxygen and hydrogen under electrical current
3. Water reactions with non-metal oxides (combination)

$$
\begin{gathered}
\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}=\quad \text { (sulfurous acid) } \\
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}= \\
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}=\quad \text { (carbonic acid) }
\end{gathered}
$$

4. Some metal oxides also can react with water (combination)

$$
\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O}=
$$

5. water forms compoundS where its molecule does not decompoSe (hydrates)

$$
\begin{aligned}
\mathrm{CuSO}_{4}+5 \mathrm{H}_{2} \mathrm{O} & =\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} & =\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \\
\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O} & =\mathrm{NaOH} \cdot \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

DisSolution, Solutions

- Solution is a special type of homogeneous mixture composed of two or more substances. The most common state of solutions is liquid.
- The composition of a solution can change.
- In a solution a solvent is the one that is taken in a larger quantity and has the same aggregate state as the solution.
- The solute is the substance dissolved in a solvent.
- In the case of water - water is always a solvent.

Solutions, disSolution

- Solutions can be solid (hydrogen dissolved in metals)
- There are no gas solutions because there are no interactions between gas molecules.

Solutions

- Solution where a given substance cannot dissolve anymore is called saturated (under the given conditions)
- Solubility is an ability of a substance to dissolve in a solution.
- The measure of solubility is the amount of the substance in its saturated
 solution

Temperature, ${ }^{\circ} \mathrm{C}$

Solution concentration

- The mass fraction is the ratio of the mass of a solute to the mass of the solution.

Concentration is a relative amount of a solute in a solution Molar concentration is the ratio of amount of solute in moles to the volume in liters

$3 \mathrm{H}_{2}+\mathrm{N}_{2}=2 \mathrm{NH}_{3}$

Hydrogen $-\mathrm{H}_{2}$ (molecular mass $2 \times 1=2 \mathrm{~g}$)
Nitrogen - N_{2} (molecular mass $2 \times 14=28 \mathrm{~g}$)
Ammonia - NH_{3} (molecular mass $14+3 \times 1=17 \mathrm{~g}$)
1 mole of any gas at normal conditions takes up 22.4 L

This class uses the materials from the following books:
"
Manyuilov and Rodionov "Chemistry for children and adults"
Kuzmenko, Eremin, Popkov "Beginnings of chemistry" http://school-collection.edu.ru (experiments)

