Oxygen

Below is the solution to the problem \#1 from the previous HW.
A person needs about 1 mole of oxygen per hour to breath. Calculate how much $\mathrm{Na}_{2} \mathrm{O}_{2}$ will be needed for a 24 -h trip in a single-person submarine using the following equation:

$$
\mathrm{Na}_{2} \mathrm{O}_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{O}_{2}
$$

a. We balance the equation:

$$
2 \mathrm{Na}_{2} \mathrm{O}_{2}+2 \mathrm{CO}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{O}_{2}
$$

This tells us that from 2 moles of $\mathrm{Na}_{2} \mathrm{O}_{2}$ we get 1 mole of oxygen O_{2}.
b. For a 24 -h trip we will need: $1 \mathrm{~mole} / \mathrm{hr} \times 24 \mathrm{hr}=24$ moles of oxygen. If to get 1 mole of oxygen we need 2 moles of sodium peroxide, then to get 24 moles of oxygen we will need $24 \times 2=48$ moles of $\mathrm{Na}_{2} \mathrm{O}_{2}$.
c. To obtain the answer in grams, we calculate the molar mass of sodium peroxide and multiply it by the number of moles that we need (48):
$\mathrm{M}\left(\mathrm{Na}_{2} \mathrm{O}_{2}\right)=2 \times 23+2 \times 16=78 \mathrm{~g} / \mathrm{mole}$
We will need: $78 \mathrm{~g} /$ mole $\times 48$ moles $=3744 \mathrm{~g}$ or 3 kg 744 g of $\mathrm{Na}_{2} \mathrm{O}_{2}$.

1. There are 10 g of each: $\mathrm{KMnO}_{4}, \mathrm{KClO}_{3}, \mathrm{KNO}_{3}$ in the lab. How many liters of oxygen can be obtained from each of these reagents? Use the following equations and the example below:

$$
\begin{gathered}
2 \mathrm{KMnO}_{4}->\mathrm{K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2} \\
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2} \\
2 \mathrm{KNO}_{3} \rightarrow 2 \mathrm{KNO}_{2}+\mathrm{O}_{2}
\end{gathered}
$$

a) Let's find the volume of oxygen that can be obtained from potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$. According to the equation from 2 moles of potassium permanganate we can obtain 1 mole of oxygen. The molar mass of KMnO_{4} is:

$$
39(\mathrm{~K})+55(\mathrm{Mn})+4 \times 16(4 \text { oxygen atoms })=158 \mathrm{~g} / \mathrm{mole}
$$

This means that from $2 \mathrm{x} 158 \mathrm{~g}=316 \mathrm{~g}$ of KMnO_{4} we obtain 1 mole of oxygen.
b) We calculate how many moles of oxygen we will obtain from 10 g of KMnO_{4} :
$10 \mathrm{~g} / 316(\mathrm{~g} / \mathrm{mole})=0.0316$ mole oxygen
c) One mole of any gas occupies 241 under normal conditions. To calculate what volume 0.0316 moles of oxygen will occupy we multiply the volume per 1 mole by the number of moles:
$241 /$ mole $\times 0.0316$ moles $=1.3$ liter
This is the answer to the question -from 10 g of KMnO_{4} we will obtain 1.3 liters of oxygen.
2. Find oxides among the following compounds: $\mathrm{NO}_{2}, \mathrm{HNO}_{2}, \mathrm{Fe}(\mathrm{OH})_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, $\mathrm{Mn}_{2} \mathrm{O}_{7}, \mathrm{SiO}_{2}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{PbO}, \mathrm{PbS}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{O}_{2}$.
3. What is the density of O_{2} (in g / L) under normal conditions?
4. Write down reaction of decomposition of azurite $\mathrm{Cu}_{3} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{8}$ if you know that all the products are compounds known to you.

