The mole, molar gas volume, Clapeyron-Mendeleev equation

- To calculate masses of products and reactants using balanced chemical equations we use a unit called mole. One mole of a substance is the amount whose mass equals the molecular or atomic weight (in atomic mass units, amu) of the substance expressed in grams. This means that molecular weight of any substance in amu (from periodic table) is equal to molar weight in grams.
- A mole of anything has 6.022×10^{23} particles. This is called Avogadro's number, after Amedeo Avogadro, who first suggested that equal volumes of gas have equal numbers of molecules.
- 1 mole of any gas takes a volume of 22.4 liters at "normal conditions ". This is a molar gas volume under the normal conditions. Normal conditions are temperature of $0^{\circ} \mathrm{C}(273 \mathrm{~K})$ and pressure of 1 atm (101325 Pa)
- For conditions that differ from normal we use Clapeyron-Mendeleev equation:
$\mathrm{pV}=\mathrm{nRT}$
n - gas mole number
p - gas pressure (atm)
V - gas volume (liters)
T - temperature (K)
R - gas constant ($0.0821 \mathrm{I} \times$ atm $/$ mole $\times \mathrm{K}$)

1. A person needs about 1 mole of oxygen per hour to breath. Calculate how much $\mathrm{Na}_{2} \mathrm{O}_{2}$ will be needed for a 24 -h trip in a single-person submarine using the following equation:

$$
\mathrm{Na}_{2} \mathrm{O}_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{O}_{2}
$$

2. How many moles of oxygen are in an oxygen tank of 40 L if the oxygen is under a pressure of 150 atm at $20^{\circ} \mathrm{C}$? How much air $\left(\mathrm{m}^{3}\right)$ were used to obtain this oxygen? (Assume that oxygen makes up 21% by volume of air.)
3. There are 10 g of each: $\mathrm{KMnO}_{4}, \mathrm{KClO}_{3}, \mathrm{KNO}_{3}$ in the lab. How many liters of oxygen can be obtained from each of these reagents? Use the following equations:

$$
\begin{gathered}
2 \mathrm{KMnO}_{4}->\mathrm{K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2} \\
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2} \\
2 \mathrm{KNO}_{3} \rightarrow 2 \mathrm{KNO}_{2}+\mathrm{O}_{2}
\end{gathered}
$$

