
Balance the following equations.

Remember that the number of atoms of each type should be the same on the left and the right parts of the equation!

E.g. <u>unbalanced equation</u>: $K + H_2O \rightarrow KOH + H_2$

(there are 2 H on the left but 3 on the right. There should be as many atoms of each element after the reaction as before it – remember mass conservation law!)

<u>The same equation balanced</u>: $2K + 2H_2O \rightarrow 2KOH + H_2$ (there are 2 K on each side, 2 O on each side and 4 H on each side).

Al(s) + Fe₂O₃(s)
$$\triangle$$
 Al₂O₃(s) + Fe(s)
KClO₃(s) \triangle KCl(s) + O₂(g)
 $C_4H_{10}(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$
N₂(g) + H₂(g) \rightarrow NH₃(g)
P₄(s) + F₂(g) \rightarrow PF₅(g)
Zn(NO₃)₂(s) \triangle ZnO(s) + NO₂(g)+ O₂(g)
H₃PO₄(l) \triangle H₂O(l) + P₄O₁₀(s)
Cu(s)+AgNO₃(aq) \rightarrow Cu(NO₃)₂(aq) + Ag|
Fe(s) + O₂(g) \rightarrow Fe₂O₃(s)
FeCl₃(s) + H₂O(l) \rightarrow HCl(aq) + Fe(OH)₃|