Metric Examples

Any US paper currency note (\$1, \$5, \$10, \$20) has a mass of 1 g ; the mass of a nickel is 5 g ; the mass of a penny is $\mathbf{2 . 5}$ grams.

A typical doorknob is $\sim 1 \mathrm{~m}$ high.

The mass of the Earth is $6 \times 10^{24} \mathrm{~kg}$; the mass of the Moon is $7.3 \times 10^{22} \mathrm{~kg}$; the mass of the Sun is $1.99 \times 10^{30} \mathrm{~kg}$.

Typical airport runway length is 3.35 km; Boeing 767 jet is 64 m long.

Diameter of Influenza virus is $\mathbf{\sim} 20 \mathrm{~nm}$.

The diameter of a CD or a DVD is 12 cm ; the diameter of the center hole is 15 mm .

Scientific Notation

Scientific notation (also referred to as "standard form" or "standard index form") is a way of writing numbers that are either too big or too small to be conveniently written in decimal form.
decimal point
a real number with
an absolute value
between 1 and 10
an order of magnitude value written as a power of 10

- One light year is equal to about $5.88 \times 10^{\mathbf{1 2}}$ miles
- Natural spider silk is about $\mathbf{3 \times 1 0 ^ { - 6 }}$ meters thick
- Lake Superior volume is about 1.21×10^{16} liters

Conversion of Units

- For the same quantity measured, we can convert units using an equivalence statement which shows the relationship between the units (this relationship is called a conversion factor).

Imperial-Metric equivalence statements:

Units of Length Units of Weight Units of Capacity
$\Rightarrow 1 \mathrm{in}=2.54 \mathrm{~cm}$
$>3.28 \mathrm{ft}=1 \mathrm{~m}$
> $1 \mathrm{mi}=1.61 \mathrm{~km}$
$>1 \mathrm{oz}=28.35 \mathrm{~g}$
>1.06 qt $=1 \mathrm{~L}$
$>1 \mathrm{lb}=454 \mathrm{~g} \quad>1 \mathrm{gal}=3.79 \mathrm{~L}$
> $2.2 \mathrm{lb}=1 \mathrm{~kg}$

- Units that measure physical quantities (like the examples above) always have a common zero.
- Within the Metric System itself, by design, conversion factors are always a power of 10.

Dimensional Analysis

- Dimensional Analysis (also called Factor-Label Method or the Unit Factor Method) is a problemsolving method that uses the fact that any number or expression can be multiplied by one (Magic One) without changing its value.
- To help with conversion of units, Magic One is built using the equivalence statement:

Equivalence Statement(s)

Magic One(s)

$1 \mathrm{in}=2.54 \mathrm{~cm}$

$$
\frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}=1
$$

$$
\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}=1
$$

$$
\frac{2.2 \mathrm{lb}}{1 \mathrm{~kg}}=1
$$

$$
\frac{1 \mathrm{~kg}}{2.2 \mathrm{lb}}=1
$$

Example: Convert 130 lbs to kg

$>$ Step 1. Write the original measurement as a unit fraction:

$$
130 \mathrm{lbs} / 1
$$

> Step 2. Using the equivalence statement, build a magic one (building rule - the numerator unit is the unit you want, the denominator unit is the original unit you want to eliminate):

$$
2.2 \mathrm{lb}=1 \mathrm{~kg} \quad \Longleftrightarrow \frac{1 \mathrm{~kg}}{2.21 \mathrm{~b}}=1
$$

$>$ Step 3: multiply your unit fraction by your magic one and write your answer in the new units:

Example: The fuel tank of a plane can hold 876 liters of gas. How many gallons would it be?

Equivalency: 1 gallon = 3.8 liters
$\frac{876 \mathrm{~L}}{1} \cdot \frac{1 \mathrm{gal}}{3.8 \mathrm{~K}}=\frac{876 \mathrm{gal}}{3.8}=230.5 \mathrm{gal}$

Exercise: As a practical joke, on the show Candid Camera, a gas station listed their price as $\$ 1.79 / \mathrm{L}$. People gassing up thought they were getting a great deal, but then were outraged when their total owed came up. WHY?

Let's carefully examine: "Listed their price as $\$ 1.79 / \mathrm{L}$ "

Equivalency: 1 gal $=3.79 \mathrm{~L}$
$\frac{\$ 1.79}{1 \mathrm{~K}} \cdot \frac{3.79 \mathrm{Z}}{1 \mathrm{gal}}=\frac{\$ 6.78}{1 \mathrm{gal}}$
"The deal" was actually \$6.78/gal!

Conversion of Temperature

When converting temperature between different scales, we need to pay attention to the fact that they all have different " 0 " points, therefore not only a multiplication factor is needed but also a shift.

Kelvin

$\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$

Fahrenheit

$$
{ }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C} \cdot 1.8+32={ }^{\circ} \mathrm{C} \cdot \frac{9}{5}+32
$$

Celsius

$$
{ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8=\left({ }^{\circ} \mathrm{F}-32\right) \cdot \frac{5}{9}
$$

Temperature Scales

Note: according to the latest research, normal human body temperature is $36.8{ }^{\circ} \mathrm{C} \pm 0.7^{\circ} \mathrm{C}$, or $98.2^{\circ} \mathrm{F} \pm 1.3^{\circ} \mathrm{F}$.

