Ohm's Law

$U=I \cdot R$

- V is Voltage, the Potential Difference between two ends of a wire (or resistor, light bulb etc). Measured in Volts [V]
- I is Electric Current, the total charge flowing through the wire in 1 sec. Measured in Amperes [A] (Coulomb per second) : $1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}$
- R is Resistance of the wire. Measured in Ohms [Ω]. $1 \Omega=1 \mathrm{~V} / \mathrm{A}$

POWER

$$
\text { Power }=\frac{\text { Work }}{\text { time }}, \quad \mathrm{P}=\frac{\Delta \mathrm{W}}{\Delta t}
$$

- W may be mechanical work, or work done by a battery driving an electric current.
- In this definition, Work can also be replaced with Heat. That will be thermal power rather than mechanical or electric one.
- Units of power are Watts [W]: $1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$ (Joule per second)

POWER IN ELECTRIC CIRCUIT

$$
\text { Power }=\text { Current } \times \text { Voltage }, \quad \mathrm{P}=I \cdot V
$$

Homework

Problem 1.

A typical AA battery has voltage 1.5 V , and can support current 0.01 A for 100 hours (it's called 1Ah or amp-hours). Suppose you want to replace such a battery with a capacitor charged to the same voltage, 1.5 V . Estimate the charge of this capacitor in Coulomb (C)?

Problem 2

A 1.5 V battery that store a charge of 1 Ah (Amp-hour) is used to power a flash light. Resistance of the light bulb is 5 Ohm. Find the expected battery life in hours.

Problem 3

An electric motor is used to lift a load of mass $\mathbf{m}=\mathbf{5 0} \mathbf{~ k g}$ to height $\mathbf{h}=\mathbf{1 0 m}$, over time $\mathbf{t}=\mathbf{1 0} \mathbf{s}$ Find the power of the motor and current that runs through it, if the voltage on the motor is $\mathrm{V}=110 \mathrm{~V}$.

