Thermodynamic variables: Temperature

- Temperature T determines the direction of heat transfer. Heat between two objects in contact flows from the hotter one to colder one. Eventually, their temperatures will equilibrate: $\mathrm{T}_{1}=\mathrm{T}_{2}$.
- The most common is Celsius temperature scale. $\mathrm{T}=0^{\circ} \mathrm{C}$ is the melting point of ice, and $\mathrm{T}=100^{\circ} \mathrm{C}$ is the boiling temperature of water at atmospheric pressure.
- Many properties of matter depend on temperature. For most substances, volume increases upon heating (exception: water near freezing point, between $0^{\circ} \mathrm{C}$ and $4^{\circ} \mathrm{C}$).
- Thermal Expansion Coefficient (units $1 /{ }^{\circ} \mathrm{C}$):

$$
a=\frac{1}{V} \frac{\Delta V}{\Delta T}
$$

- Example: a $=1.8 \cdot 10^{-4} 1 /{ }^{\circ} \mathrm{C}$ for Mercury (Hg). This means that as temperature increases by $\Delta \mathrm{T}=10^{\circ} \mathrm{C}$, a mercury droplet of initial volume V will grow by the amount $\Delta \mathrm{V}=$ $a \mathrm{~V} \Delta \mathrm{~T}=1.8 \cdot 10^{-3} \mathrm{~V}$, or by 0.18%.
- Another way to characterize thermal expansion is to use Linear Thermal Expansion coefficient, a_{L}. It tells how much linear dimensions (say, length) changes with temperature:

$$
a_{L}=\frac{1}{L} \frac{\Delta L}{\Delta T}
$$

- For all liquids and many solids, $a_{\mathrm{L}}=\mathrm{a} / 3$.

Homework

Problem 1

Please design a thermometer that will be able to measure temperature in a range $\boldsymbol{\Delta T}$. You may use glass capillary with length \mathbf{L} and cross-section area \mathbf{S}, connected to a glass reservoir that contains certain liquid. What should be the volume \mathbf{V} of the reservoir, to make the thermometer maximally accurate? Thermal expansion coefficient of the liquid is a.
a) Obtain the general formula, and compute the result for Ethanol-based thermometer, with dimensions $\mathbf{L}=\mathbf{2 0} \mathbf{c m}, \mathbf{S}=\mathbf{0 . 0 1} \mathbf{c m}^{\mathbf{2}}$. Temperature range $\Delta \mathrm{T}$ must be sufficient to monitor weather in Long Island. Thermal expansion coefficient of ethanol can be googled.
b) Estimate the best possible accuracy of such thermometer.

Problem 2

How much taller is the Eiffel Tower on the hot summer day ($30^{\circ} \mathrm{C}$) than on cold winter day $\left(-5^{\circ} \mathrm{C}\right)$? The tower is 324 m tall measured from the top of the flagpole. Assume the tower is built of structural steel. (It's actually made of "puddle iron".)

