• **1 Mole [mol]** of any substance contains the same number of molecules , called **Avogadro Number:**

$$N_A \approx 6.02 \cdot 10^{23} \frac{1}{mol}$$

• Molar Mass, μ [g/mol] is the mass of 1 mole of a given substance. To find it, you need to add up **atomic weights** of all the atoms in a single molecule. Those can be found in Periodic Table.

Example: $\mu_{H_20} = (2+16)\frac{g}{mol} = 18\frac{g}{mol}$

	Volume	Mass	Amount of Substance	Number of Molecules
Symbol	V	Μ	n	Ν
Units	[m ³] or [cm ³]	[kg] or [g]	[mol]	1
	$\rho = -$ Greek 'r	M V ho' Greek 'mu	$=\frac{M}{\mu}$ $v =$	$=\frac{N}{N_A}$

Homework

Suppose you know density ρ (in g/ml) and molar mass ρ (in g/mol) for certain substance. Find how many molecules are contained in volume V of this substance. Express your result as a general formula $N=N(V, \rho, \mu, N_A)$. Using this formula, determine how many molecules are there in V= 100 ml of each of the materials in the table (you will need to consult the Periodic table to find μ):

Substance	ρ (g/ml)	μ (g/mol)	# of molecules in V = 100 ml
liquid water, H ₂ 0	1		
liquid propane, C ₃ H ₈	0.5		
Calcite (chalk)	2.7		
Aluminum*, Al	2.7		
Gold*, Au	19.3		

For metals (Al and Au) consider one atom to be a molecule.