Homework for April 7, 2019.

Algebra/Trigonometry.

Please, complete the previous homework assignments from this year. Review the classwork handout on trigonometric functions. Additional reading on trigonometric functions is Read Gelfand \& Saul, Trigonometry, Chapter 2 (pp. 42-54) and Chapters 6-8 (pp. 123-163), http://en.wikipedia.org/wiki/Trigonometric functions http://en.wikipedia.org/wiki/Sine. Solve the following trigonometry problems repeated from the last assignment.

Problems.

1. Solve the following equations and inequalities:
a. $\sin x+\sin 2 x+\sin 3 x=\cos x+\cos 2 x+\cos 3 x$
b. $\cos 3 x-\sin x=\sqrt{3}(\cos x-\sin 3 x)$
c. $\sin ^{2} x-2 \sin x \cos x=3 \cos ^{2} x$
d. $\sin 6 x+2=2 \cos 4 x$
e. $\cot x-\tan x=\sin x+\cos x$
f. $\sin x \geq \pi / 2$
g. $\sin x \leq \cos x$

Geometry.

Please, complete the previous homework assignments from this year. Review the classwork handout on vectors. Solve the following problems.

Problems.

1. In a triangle $A B C$, vectors $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{B C}$ (\mathbf{c}, \mathbf{b} and a) are the sides. $\overrightarrow{A N}, \overrightarrow{C M}$ and $\overrightarrow{B P}$ are the medians.
a. Express vectors $\overrightarrow{A N}, \overrightarrow{C M}$ and $\overrightarrow{B P}$ through vectors \mathbf{c}, \mathbf{b} and \mathbf{a}.

b. Find the sum of vectors $\overrightarrow{A N}, \overrightarrow{C M}$ and $\overrightarrow{B P}$.
2. Solve the same problem for bisectors $\overrightarrow{A N}, \overrightarrow{C M}$ and $\overrightarrow{B P}$ in a triangle $A B C$.
3. Coxeter, Greitzer, problem \#9 to Sec. 2.1 (p.31): How far away is the horizon as seen from the top of a mountain 1 mile high? (Assume the Earth to be a sphere of diameter 7920 miles.)
4. In a rectangle $A B C D, A_{1}, B_{1}, C_{1}$ and D_{1} are the mid-points of sides $A B$, $C D, B C$ and $D A$, respectively. M is the crossing point of the segments $A_{1} B_{1}$, and $C_{1} D_{1}$, connecting two pairs of midpoints.
a. Express vector $\overrightarrow{A_{1} M}$ through $\overrightarrow{A B}, \overrightarrow{B C}$ and $\overrightarrow{C D}$.
b. Prove that M is the mid-point of segments, $A_{1} B_{1}$ and $C_{1} D_{1}$, i.e.

$$
\left|A_{1} M\right|=\left|M B_{1}\right| \text { and }\left|C_{1} M\right|=\left|M D_{1}\right| .
$$

5. In a parallelogram $A B C D$, find $\overrightarrow{A B}+\overrightarrow{B D}-2 \overrightarrow{A D}$.
6. M is a crossing point of the medians in a triangle $A B C$. Prove that $\overrightarrow{A M}=\frac{1}{3}(\overrightarrow{A B}+\overrightarrow{A C})$.
7. For three points, $A(-1,3), B(2,-5)$ and $C(3,4)$, find the (coordinates of) following vectors,
a. $\overrightarrow{A B}-\overrightarrow{B C}$
b. $\overrightarrow{A B}+\overrightarrow{C B}+\overrightarrow{A C}$
c. $\overrightarrow{A B}+\frac{1}{2} \overrightarrow{B C}+\frac{1}{3} \overrightarrow{C A}$
8. For two triangles, $A B C$ and $A_{1} B_{1} C_{1}, \overrightarrow{A A_{1}}+\overrightarrow{B B_{1}}+\overrightarrow{C C_{1}}=0$. Prove that medians of these two triangles cross at the same point M.
