Homework for April 7, 2019.

Algebra/Trigonometry.

Please, complete the previous homework assignments from this year. Review the classwork handout on trigonometric functions. Additional reading on trigonometric functions is Read Gelfand & Saul, Trigonometry, Chapter 2 (pp. 42-54) and Chapters 6-8 (pp. 123-163),

http://en.wikipedia.org/wiki/Trigonometric functions http://en.wikipedia.org/wiki/Sine. Solve the following trigonometry problems repeated from the last assignment.

Problems.

- 1. Solve the following equations and inequalities:
 - a. $\sin x + \sin 2x + \sin 3x = \cos x + \cos 2x + \cos 3x$
 - b. $\cos 3x \sin x = \sqrt{3}(\cos x \sin 3x)$
 - c. $\sin^2 x 2\sin x \cos x = 3\cos^2 x$
 - d. $\sin 6x + 2 = 2\cos 4x$
 - e. $\cot x \tan x = \sin x + \cos x$
 - f. $\sin x \ge \pi/2$
 - g. $\sin x \le \cos x$

Geometry.

Please, complete the previous homework assignments from this year. Review the classwork handout on vectors. Solve the following problems.

Problems.

- 1. In a triangle ABC, vectors \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{BC} (**c**, **b** and **a**) are the sides. \overrightarrow{AN} , \overrightarrow{CM} and \overrightarrow{BP} are the medians.
 - a. Express vectors \overrightarrow{AN} , \overrightarrow{CM} and \overrightarrow{BP} through vectors **c**, **b** and **a**.

- b. Find the sum of vectors \overrightarrow{AN} , \overrightarrow{CM} and \overrightarrow{BP} .
- 2. Solve the same problem for bisectors \overrightarrow{AN} , \overrightarrow{CM} and \overrightarrow{BP} in a triangle *ABC*.

- 3. Coxeter, Greitzer, problem #9 to Sec. 2.1 (p. 31): How far away is the horizon as seen from the top of a mountain 1 mile high? (Assume the Earth to be a sphere of diameter 7920 miles.)
- 4. In a rectangle *ABCD*, A_1 , B_1 , C_1 and D_1 are the mid-points of sides *AB*, *CD*, *BC* and *DA*, respectively. *M* is the crossing point of the segments A_1B_1 , and C_1D_1 , connecting two pairs of midpoints.
 - a. Express vector $\overrightarrow{A_1M}$ through \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{CD} .
 - b. Prove that *M* is the mid-point of segments, A_1B_1 and C_1D_1 , i.e. $|A_1M| = |MB_1|$ and $|C_1M| = |MD_1|$.
- 5. In a parallelogram *ABCD*, find $\overrightarrow{AB} + \overrightarrow{BD} 2\overrightarrow{AD}$.
- 6. *M* is a crossing point of the medians in a triangle *ABC*. Prove that $\overrightarrow{AM} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AC}).$
- 7. For three points, A(-1,3), B(2,-5) and C(3,4), find the (coordinates of) following vectors,
 - a. $\overrightarrow{AB} \overrightarrow{BC}$ b. $\overrightarrow{AB} + \overrightarrow{CB} + \overrightarrow{AC}$ c. $\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} + \frac{1}{3}\overrightarrow{CA}$
- 8. For two triangles, *ABC* and $A_1B_1C_1$, $\overrightarrow{AA_1} + \overrightarrow{BB_1} + \overrightarrow{CC_1} = 0$. Prove that medians of these two triangles cross at the same point *M*.