Homework for March 17, 2019.

Algebra.

Review the classwork handout. Complete the unsolved problems from the previous homework and classwork exercises. Solve the following problems.

1. Let x_{1}, x_{2} and x_{3} be distinct real numbers. Prove that there exists a unique polynomial, $P(x)$, of degree 2 such that $P\left(x_{1}\right)=1, P\left(x_{2}\right)=$ $P\left(x_{3}\right)=0$. [Hint: if $P\left(x_{1}\right)=0$, then $P(x)$ is divisible by $\left(x-x_{1}\right)$.] Find this polynomial if $x_{1}=2, x_{2}=-1, x_{3}=5$.
2. As before, let x_{1}, x_{2} and x_{3} be distinct real numbers, and let y_{1}, y_{2} and y_{3} be any collection of numbers. Prove that there is a unique quadratic polynomial $f(x)$ such that $f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}, f\left(x_{3}\right)=y_{3}$. Find this polynomial if $x_{1}=2, x_{2}=-1, x_{3}=5, y_{1}=3, y_{2}=6, y_{3}=18$. [Hint: look for in the form $f(x)=y_{1} f\left(x_{1}\right)+\cdots$.]
3. Prove the following general result: given numbers $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$, such that x_{i} are distinct, there exists a unique polynomial $f(x)$ of degree $n-1$ such that $f\left(x_{i}\right)=y_{i}, i=1, \ldots, n$. (For $n=2$, this is a statement that there is a unique line through two given points.)
4. Prove that if $P(x)$ is a polynomial with integer coefficients, then for any integer a, b, the difference $P(a)-P(b)$ is divisible by $a-b$.
5. Le t x_{1} and x_{2} be the roots of the polynomial, $x^{2}+7 x-3$. Find
a. $x_{1}{ }^{2}+x_{2}{ }^{2}$
b. $\frac{1}{x_{1}}+\frac{1}{x_{2}}$
c. $\left(x_{1}-x_{2}\right)^{2}$
d. $x_{1}{ }^{3}+x_{2}{ }^{3}$

Geometry/Trigonometry.

Read the classwork handout. Complete the unsolved problems from the previous homework. Additional reading on trigonometric functions is Gelfand \& Saul, Trigonometry, Chapter 2 (pp. 42-54) and Chapters 6-8 (pp. 123-163), http://en.wikipedia.org/wiki/Trigonometric functions http://en.wikipedia.org/wiki/Sine. Solve the following problems.

1. Simplify the following expressions:
a. $\frac{\sin (\pi+\alpha) \cos (\pi-\alpha)}{\sin (\alpha-\pi) \cos (\alpha+\pi)}$
b. $\frac{\cot ^{2}\left(\alpha+\frac{\pi}{2}\right) \cos ^{2}\left(\alpha-\frac{\pi}{2}\right)}{\cot ^{2}\left(\alpha-\frac{\pi}{2}\right)-\cos ^{2}\left(\alpha+\frac{\pi}{2}\right)}$
c. $\frac{\cot \left(\frac{3 \pi}{2}-\alpha\right)}{1-\tan ^{2}(\alpha-\pi)} \cdot \frac{\cot ^{2}(2 \pi-\alpha)-1}{\cot (\alpha+\pi)}$
d. $\frac{\cos ^{2}\left(\alpha-\frac{3 \pi}{2}\right)}{\sin ^{-2}\left(\alpha+\frac{\pi}{2}\right)-1} \cdot \frac{\sin ^{2}\left(\alpha+\frac{3 \pi}{2}\right)}{\cos ^{-2}\left(\alpha-\frac{\pi}{2}\right)-1}$
e. $\frac{\left(1+\tan ^{2}\left(\alpha-\frac{\pi}{2}\right)\right)\left(\sin ^{-2}\left(\alpha-\frac{3 \pi}{2}\right)-1\right)}{\left(1+\cot ^{2}\left(\alpha+\frac{3 \pi}{2}\right)\right) \cos ^{-2}\left(\alpha+\frac{\pi}{2}\right)}$
f. $\frac{\sin ^{2}\left(\alpha+\frac{\pi}{2}\right)-\cos ^{2}\left(\alpha-\frac{\pi}{2}\right)}{\tan ^{2}\left(\alpha+\frac{\pi}{2}\right)-\cot ^{2}\left(\alpha-\frac{\pi}{2}\right)}$
2. Solve the following equations (find all solutions):
a. $\sin x=\frac{1}{2}$
b. $\tan x=1$
c. $\cos x=\frac{\sqrt{3}}{2}$
d. $\cos ^{2} x=\frac{1}{2}$
