Homework for March 17, 2019.

Algebra.

Review the classwork handout. Complete the unsolved problems from the previous homework and classwork exercises. Solve the following problems.

- 1. Let x_1, x_2 and x_3 be distinct real numbers. Prove that there exists a unique polynomial, P(x), of degree 2 such that $P(x_1) = 1$, $P(x_2) = P(x_3) = 0$. [Hint: if $P(x_1) = 0$, then P(x) is divisible by $(x x_1)$.] Find this polynomial if $x_1 = 2$, $x_2 = -1$, $x_3 = 5$.
- 2. As before, let x_1 , x_2 and x_3 be distinct real numbers, and let y_1 , y_2 and y_3 be any collection of numbers. Prove that there is a unique quadratic polynomial f(x) such that $f(x_1) = y_1$, $f(x_2) = y_2$, $f(x_3) = y_3$. Find this polynomial if $x_1 = 2$, $x_2 = -1$, $x_3 = 5$, $y_1 = 3$, $y_2 = 6$, $y_3 = 18$. [Hint: look for in the form $f(x) = y_1 f(x_1) + \cdots$.]
- 3. Prove the following general result: given numbers $x_1, ..., x_n, y_1, ..., y_n$, such that x_i are distinct, there exists a unique polynomial f(x) of degree n 1 such that $f(x_i) = y_i$, i = 1, ..., n. (For n = 2, this is a statement that there is a unique line through two given points.)
- 4. Prove that if P(x) is a polynomial with integer coefficients, then for any integer a, b, the difference P(a) P(b) is divisible by a b.
- 5. Let x_1 and x_2 be the roots of the polynomial, $x^2 + 7x 3$. Find

a.
$$x_1^2 + x_2^2$$

b. $\frac{1}{x_1} + \frac{1}{x_2}$
c. $(x_1 - x_2)^2$
d. $x_1^3 + x_2^3$

Geometry/Trigonometry.

Read the classwork handout. Complete the unsolved problems from the previous homework. Additional reading on trigonometric functions is Gelfand & Saul, Trigonometry, Chapter 2 (pp. 42-54) and Chapters 6-8 (pp. 123-163), <u>http://en.wikipedia.org/wiki/Trigonometric functions</u> <u>http://en.wikipedia.org/wiki/Sine</u>. Solve the following problems.

1. Simplify the following expressions:
a.
$$\frac{\sin(\pi+\alpha)\cos(\pi-\alpha)}{\sin(\alpha-\pi)\cos(\alpha+\pi)}$$
b.
$$\frac{\cot^{2}\left(\alpha+\frac{\pi}{2}\right)\cos^{2}\left(\alpha-\frac{\pi}{2}\right)}{\cot^{2}\left(\alpha-\frac{\pi}{2}\right)-\cos^{2}\left(\alpha+\frac{\pi}{2}\right)}$$
c.
$$\frac{\cot\left(\frac{3\pi}{2}-\alpha\right)}{1-\tan^{2}(\alpha-\pi)} \cdot \frac{\cot^{2}(2\pi-\alpha)-1}{\cot(\alpha+\pi)}$$
d.
$$\frac{\cos^{2}\left(\alpha-\frac{3\pi}{2}\right)}{\sin^{-2}\left(\alpha+\frac{\pi}{2}\right)-1} \cdot \frac{\sin^{2}\left(\alpha+\frac{3\pi}{2}\right)}{\cos^{-2}\left(\alpha-\frac{\pi}{2}\right)-1}$$
e.
$$\frac{\left(1+\tan^{2}\left(\alpha-\frac{\pi}{2}\right)\right)\left(\sin^{-2}\left(\alpha-\frac{3\pi}{2}\right)-1\right)}{\left(1+\cot^{2}\left(\alpha+\frac{3\pi}{2}\right)\right)\cos^{-2}\left(\alpha+\frac{\pi}{2}\right)}$$
f.
$$\frac{\sin^{2}\left(\alpha+\frac{\pi}{2}\right)-\cos^{2}\left(\alpha-\frac{\pi}{2}\right)}{\tan^{2}\left(\alpha+\frac{\pi}{2}\right)-\cot^{2}\left(\alpha-\frac{\pi}{2}\right)}$$
2. Solve the following equations (find all solutions):

a.
$$\sin x = \frac{1}{2}$$

b. $\tan x = 1$
c. $\cos x = \frac{\sqrt{3}}{2}$
d. $\cos^2 x = \frac{1}{2}$