Algebra.

Powers and roots.

Integer powers. For any integer $m \in \mathbb{Z}$ and natural $n \in \mathbb{N}$,

$$
\begin{gathered}
a^{n} \cdot a^{m}=a^{n+m}, \quad \frac{a^{n}}{a^{m}}=a^{n} \cdot a^{-m}=a^{n-m} \\
\left(a^{n}\right)^{m}=a^{n \cdot m}=\left(a^{m}\right)^{n}(\forall n, m \in \mathbb{Z})
\end{gathered}
$$

Algebraic roots. For any integer $m \in \mathbb{Z}$ and natural $n \in \mathbb{N}, a, b \in \mathbb{R}_{+}, c \in \mathbb{R}$:

- $\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$
- $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}(b \neq 0)$
- $\sqrt[n]{\sqrt[m]{a}}=\sqrt[n \cdot m]{a}(m>0)$
- $\sqrt[n]{a}=\sqrt[n \cdot m]{a^{m}}(m>0)$
- $\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}(a \neq 0$ if $m \leq 0)$
- $\sqrt[m]{(-a)^{m}}=$ a if $m=2 k, \sqrt[m]{(-a)^{m}}=-a$, if $m=2 k+1$

Rational powers. For any integer $p \in \mathbb{Z}$ and natural $q \in \mathbb{N}$,

$$
a^{\frac{p}{q}}=\left(a^{\frac{1}{\bar{q}}}\right)^{p}=(\sqrt[q]{a})^{p}\left(a \in \mathbb{R}_{+}, q \in \mathbb{N}, p \in \mathbb{Z}\right)
$$

defines power for rational values of exponent. The following rules apply in this case, which follow from the above properties of integer powers and roots.

- $(a b)^{p}=a^{p} b^{p}$
- $\left(\frac{a}{b}\right)^{p}=\frac{a^{p}}{b^{p}}$
- $a^{p} \cdot a^{q}=a^{p+q}$
- $\left(a^{p}\right)^{q}=a^{p q}$
- $\left(a^{p}\right)^{\frac{1}{q}}=a^{\frac{p}{q}}$

Intervals of monotonic behavior. For $a>1$ the value of a^{p} increases when p increases. For $0<a<1$ the value of a^{p} decreases when p increases. For rational $p=m / n$ this can be straightforwardly proven by finding the common denominator of $p=m / n<q=r / s$ (case of negative p should be considered).

Consequently, we can extend the definition of powers to irrational numbers x, such as $\sqrt{2}$, as follows.

Definition. For an irrational $x \in R$, and $a>1, a^{x}$ is a number such that that for any rational q less than $x, a^{x}>a^{p}$, while for any rational number greater that $x, a^{x}<a^{p}$,

$$
\begin{aligned}
& a^{x}>a^{p}, \forall p<x, p \in \mathbb{Q}, a>1 \\
& a^{x}<a^{p}, \forall p>x, p \in \mathbb{Q}, a>1
\end{aligned}
$$

Similarly, for $0<a<1$,

$$
\begin{aligned}
& a^{x}<a^{p}, \forall p<x, p \in \mathbb{Q}, 0<a<1 \\
& a^{x}>a^{p}, \forall p>x, p \in \mathbb{Q}, 0<a<1
\end{aligned}
$$

It is important to mention that in order to make this definition correct we must prove that such a number exists and is unique (use Dedekind section?).

Now, using the above definition we have a way to calculate, say, $2^{\sqrt{2}}$, to any given accuracy. In order to do so, we must simply find a rational number p that is close enough to $\sqrt{2}$ and compute a^{p}. In order to improve the accuracy, we may choose another number, q, yet closer to $\sqrt{2}$, and use it for the computation, and so on. We can obtain a sequence of rational numbers approaching $\sqrt{2}$ (and \sqrt{p} for any rational p) by using the continuous fraction,

$$
\sqrt{2}=a+\frac{c}{b+\frac{c}{b+\frac{c}{b+\cdots}}}
$$

Exercise. What are the coefficients a, b, and c here?

Solution of some homework problems.

1. Compare the following real numbers (are they equal? which is larger?)
a. $1.33333 \ldots=1$.(3) and $4 / 3$
$1.33333 \ldots=1+\frac{3}{10}\left(1+\frac{1}{10}+\frac{1}{10^{2}}+\frac{1}{10^{3}}+\cdots\right)=1+\frac{3}{10} \frac{1}{1-\frac{1}{10}}=1+\frac{1}{3}=\frac{4}{3}$.
b. $0.09999 \ldots=0.0(9)$ and $1 / 10$
$0.09999 \ldots=9\left(\frac{1}{100}+\frac{1}{1000}+\frac{1}{10000}+\cdots\right)=\frac{9}{100} \frac{1}{1-\frac{1}{10}}=\frac{1}{10}=0.1$
c. 99.9999... $=99 .(9)$ and 100
$99.9999 \ldots=90+9\left(1+\frac{1}{10}+\frac{1}{10^{2}}+\frac{1}{10^{3}}+\cdots\right)=90+9 \frac{1}{1-\frac{1}{10}}=100$.
d. $(\sqrt[2]{2}<\sqrt[3]{3}) \Leftrightarrow\left(2^{3}<3^{2}\right) \Leftrightarrow(8<9)$
2. Write the following rational decimals in the binary system (hint: you may use the formula for an infinite geometric series).
a. $1 / 8$
$\frac{1}{8}=\frac{1}{2^{3}}=0.001 B$.
b. $1 / 7$
$\frac{1}{7}=\frac{1}{8} \frac{1}{1-\frac{1}{8}}=\frac{1}{2^{3}}\left(1+\frac{1}{2^{3}}+\frac{1}{2^{6}}+\frac{1}{2^{9}}+\cdots\right)=0.001001001 \ldots B=0 .(001) B$.
c. $2 / 7$
$\frac{2}{7}=2 \cdot \frac{1}{7}=2 \cdot 0.001001001 \ldots B=0.01(001) B$.
d. $1 / 6$
$\frac{1}{6}=\frac{1}{8} \frac{1}{1-\frac{1}{4}}=\frac{1}{2^{3}}\left(1+\frac{1}{2^{2}}+\frac{1}{2^{4}}+\frac{1}{2^{6}}+\cdots\right)=0.0010101 \ldots B=0.001(01) B$.
e. $1 / 15$
$\frac{1}{15}=\frac{1}{16} \frac{1}{1-\frac{1}{16}}=\frac{1}{2^{4}}\left(1+\frac{1}{2^{4}}+\frac{1}{2^{8}}+\frac{1}{2^{12}}+\cdots\right)=0.000100010001 \ldots B=$ 0. (0001)B.
f. $1 / 14$
$\frac{1}{14}=\frac{1}{16} \frac{1}{1-\frac{1}{8}}=\frac{1}{2^{4}}\left(1+\frac{1}{2^{3}}+\frac{1}{2^{6}}+\frac{1}{2^{9}}+\cdots\right)=0.0001001001 \ldots B=$ $0.0001(001) B$.
g. 0.1
$\frac{1}{10}=\frac{1}{8} \frac{1}{1+\frac{1}{4}}=\frac{1}{2^{3}}\left(1-\frac{1}{2^{2}}+\frac{1}{2^{4}}-\frac{1}{2^{6}}+\cdots+\frac{1}{2^{2 n}}-\frac{1}{2^{2 n+2}}+\cdots\right)=$
$\frac{1}{2^{3}}\left(\frac{3}{2^{2}}+\frac{3}{2^{6}}+\frac{3}{2^{10}}+\cdots+\frac{3}{2^{4 n+2}}+\cdots\right)=\frac{1}{2^{3}}\left(\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{5}}+\frac{1}{2^{6}}+\frac{1}{2^{9}}+\frac{1}{2^{10}}+\right.$ $\left.\cdots+\frac{1}{2^{4 n+1}}+\frac{1}{2^{4 n+2}}+\cdots\right)=0.0001100110011 \ldots B=0.00011(0011) B$, or, using the base multiplication,
$2 \times 0.1=0.2 \Rightarrow 0.1=0.0 \ldots B$,
$2 \times 0.2=0.4 \Rightarrow 0.1=0.00 \ldots B$,
$2 \times 0.4=0.8 \Rightarrow 0.1=0.000 \ldots B$,
$2 \times 0.8=1+0.6 \Rightarrow 0.1=0.0001 \ldots B$,
$2 \times 0.6=1+.2 \Rightarrow 0.1=0.00011 \ldots B=0.00011(0011) B$.
h. $0.33333 \ldots=0 .(3)$
$0.33333 \ldots=\frac{1}{3}=\frac{1}{4} \frac{1}{1-\frac{1}{4}}=\frac{1}{2^{2}}\left(1+\frac{1}{2^{2}}+\frac{1}{2^{4}}+\frac{1}{2^{6}}+\cdots\right)=0.010101 \ldots B=$
3. (01)B.
i. $\quad 0.13333 \ldots=0.1(3)$
$0.133333 \ldots=\frac{4}{30}=\frac{2}{15}=\frac{1}{4} \frac{1}{1-\frac{1}{16}}=\frac{1}{2^{2}}\left(1+\frac{1}{2^{4}}+\frac{1}{2^{8}}+\frac{1}{2^{12}}+\cdots\right)=$ $0.0100010001 \ldots B=0.01(0001) B$.
