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Algebra.  

Comparing finite and infinite sets. Cardinality. 

We have encountered different types of numbers, which can form finite sets, 

(set of 10 decimal digits, set of integers 1 to 100, etc.), or infinite sets, such as 

natural numbers,  , integers,  , rational numbers,  , real numbers,  . The 

basic idea of numbering the elements in a set leads us to the concept of 

comparing different sets. The numbering procedure amounts to establishing a 

bijection between the elements of a set,  , and the elements of a subset of 

natural numbers,    . The obvious question then, can every set be 

numbered? Can set of all integers,  , be numbered? Of rational numbers,  ? Of 

real numbers,  ? Obviously a set,  , can be numbered, if and only if,  a 

bijection exists between this set and  ,  
 
  . Such set is said to be countable. 

Otherwise, the set is uncountable.  

Two finite sets,   and  , such that a bijection exists  
 
   necessarily have 

equal number of elements, i.e. are equinumerous. Such sets form an 

equivalence class, corresponding to the natural number that denotes the 

number of elements in the sets of this class. Thus, natural numbers arise as a 

characteristic of equivalence classes of finite sets having the same number of 

elements. Georg Cantor, the originator of set theory, in 1874–1884 extended 

this concept to infinite sets, such as all integers, or real numbers, which led to 

comparing different types of infinite numbers, which are called cardinals 

(transfinite numbers). For a finite set   the cardinal,     , is simply a number 

of elements, while for the infinite sets it has many properties reminiscent of it.  

One can define addition and multiplication for cardinals, such that the 

commutative, associative and distributive laws hold,             

           ,                                     , ... .  

An interesting and important property of cardinals, which was noted by 

Galileo in 1638, is that a cardinal of a subset of a given set can be equal to the 



cardinal of the set itself. The whole is not necessarily greater than its part, it 

can be equal to it, if “greater” means more numerous, and equal – 

equinumerous. For example, function         establishes a bijection 

between all integers and even integers,         establishes a bijection 

between the set of natural numbers and the subset of perfect squares, etc. All 

countable sets have the same cardinal as the set of natural numbers,   . Note 

that using the addition rules defined above for the set of natural numbers, 

           , where     and       are subsets of even and odd natural 

numbers, respectively, we obtain a seemingly paradoxical result,  

                   , or,         ,  

Doubling    does not change it! Also note that we cannot deduce from the 

above that     , because we do not know how to subtract cardinals.  

Comparing cardinalities. If there exists an injection,  
 
  , i. e. set   can be 

paired with a subset of set  , then          . This order relation on 

cardinalities has following useful properties, 

           

                          
 
             

                          
 
             

Countable sets. The following properties of the countable sets can be easily 

proven. For any two countable sets,  ,  , 

 Union,    , is also countable,                      
 
             

 Product,        ,   ,    ,     , is also countable,            

          
 
             

 For a collection of countable sets,     ,         , the union is also 

countable,                 

The examples of countable sets are, 



 Set   of all integers is countable,         

 Set     of pairs of positive integers is countable,            

 Set   of rational numbers is countable,         

 Set     of pairs of rational numbers is countable,            

 Set of all polynomials with rational coefficients is countable 

Uncountable sets. Continuum. The set of all real numbers,  , is uncountable. 

An ingenious indirect proof of this was given by Cantor. The proof proceeds by 

contradiction. We assume that there exists a bijection between   and all real 

numbers, which can be written in the decimal form,          . We then 

construct a number that does not occur in the assumed denumeration 

sequence, 

1.           

2.           

3.           

4.           

   

To do so, we consider a number            , where    is different from   , 

and is neither 0 or 9,    is different from   , and is neither 0 or 9, and so on.   

is a real number, but it is not included in the assumed denumeration above. 

Thus, we arrived at a contradiction, because we have assumed that all real 

numbers were included in the denumeration. This assumption must be false if 

there does exist a number which has been left out. Consequently, the 

assumption that a denumeration of the set of real numbers is possible is 

untenable, and therefore the opposite statement is true, i.e. that the set of real 

numbers is not countable. The cardinality of the set of real numbers is called 

continuum.  

Whether there exists a set with a cardinal number greater than that of the set 

of integers,   , but smaller than that of the set of real numbers, continuum, is a 

question which cannot be answered, i.e. such existence cannot be proved, or 



disproved. The assumption that such set exists, constitutes Hypothesis of the 

Continuum.  

Cantor has shown that sets with greater and greater cardinal numbers exist, 

so there is no greatest cardinal number. 

Theorem. Given set  , it is possible to construct set   with greater cardinal 

number,          . 

An indirect proof of this theorem given by Cantor proceeds by considering a 

set of all possible subsets of  ,        ,          . The set   includes 

both   and an empty set,  , and therefore          . Then, we assume that 

  has the same cardinality as  , i. e. that a bijection exists between     and   , 

 
 
  , and arrive at a contradiction by constructing a subset of  , which is not 

an element of  . The bijection  
 
   “counts” all possible subsets of a set   by 

using the elements,    , of the set itself, thus establishing a correspondence, 

 
 
   ,      . That this is not possible for finite sets, is rather obvious.  

Exercise. Show that for a set of   elements, the set of all possible subsets has 

   elements  Hint: remember Newton’s binomial?    

In order to arrive at a contradiction, we consider a subset,          , 

which is composed of all such elements     , which do not belong to the 

corresponding subset     in the bijection,    
 
    ;       . This subset differs 

from any subset     of set   by at least one element,    , and therefore the 

assumption that such a bijection exists is untenable (remember, all possible 

subsets of   are included in the bijection,    
 
    ). It then follows that 

         , so for any set   the set of its all possible subsets has greater 

cardinal number than the set itself, and therefore there is no greatest cardinal 

number.  

Exercise. Show that for the set of natural numbers,  , cardinality of the set of 

all possible subsets is equal to that of a continuum of real numbers (Hint: use 

the binary number system).  

 



Continuum and Dimensionality. The set of all real numbers,  , which is 

uncountable, can be represented by points on a line, the coordinate axis.  

Exercise. Show that the set of all real numbers from 0 to 1,    ,    ,     

 , has the same cardinality (continuum) as the set of all real numbers,  , i.e 

that a segment,   ,  , is equivalent to an infinite line. Similarly, any segment, 

  ,   , on a line, is equivalent to any other segment,   ,   .  

One might think that cardinality of a two-dimensional set of points, such as all 

points of the square with side 1, or all points on the plane, is greater than that 

of a one-dimensional continuum. It appears that this is not the case!  

Theorem. The cardinal number,   , of the set of points in a square is the same 

as the cardinal number,   , of the set of points on a line segment.  

Proof. It is sufficient to prove this equivalence for a square with side 1 and a 

segment   ,  . Indeed, we can establish a correspondence between any point 

with coordinates   ,   ,     ,  ,     ,   in a square, and a point      ,   

on a segment in the following way. Let us write numbers             and 

            in decimal notation, where we identify numbers ending in an 

infinite sequence of 9’s, which represent rational numbers, with finite-length 

decimals,     999 9      , so infinite sequences of 9 do not appear. We 

then assign a number                  ,     ,   to the point   ,   . To 

every point in a square we have thus assigned a unique number on a segment 

  ,  , since for any other point,    ,    , either   , or   , or both, differ from   

and  , respectively, in at least one digit. Therefore, the corresponding number 

     ,   will also be different. Note, that the above described correspondence 

is not a bijection, but an injection, because numbers of the type   

      9 9  9  ,     ,  , which do correspond to points on a segment 

  ,   have no corresponding points on a square. While it is possible to modify 

this correspondence so that it becomes a bijection, this is not necessary for 

our purposes, as the existence of an injection   ,     ,  
 
   ,    already 

proves that      . The obvious surjection established by associating just one 

side of a square with the segment shows that      . It then follows that 

     . One can extend this argument to show that the cardinal number of a 



set of points in a cube is also equal to the cardinal number of the set of points 

on a segment,      . 

Exercise. Show that the cardinal number of an   dimensional hyper-cube is 

equal to the cardinal number of a segment,      . 

The main conclusion from the above observations is that the dimension of a 

set of points depends not only on the cardinal number of the set. While the 

fact that the cardinality of a square, or cube, is equal to that of a segment 

seems to disagree with the intuitive notion of dimensionality, the fundamental 

reason that the above correspondence works is that it is not continuously 

mapping one set to the other. In fact, if we vary point   on a segment 

continuously from 0 to 1, the corresponding points in a square would appear 

in a completely random and discontinuous manner. This is the subject that is 

studied in topology.   

How then does the set of all rational points on the segment   ,   compare to 

the set of all points on this segment? We have already proven that the set of 

rational points is countable and has the cardinal   , while the set of all points 

on the segment   ,   is an uncountable continuum. The following theorem 

provides an alternative proof of this fact.  

Theorem. The cardinal number of a denumerable set of points on a segment is 

less than that of an arbitrarily small, of length    , part of that segment.  

Proof. It is sufficient to prove this for a segment   ,  . Let us arrange all points 

of the countable set       ,    ,     ,  , in a sequence, 

  ,     ,  ,   ,  .. Let us now enclose each point in a segment, such that the 

length of the segment enclosing  -th point is       . While some of these 

segments might be overlapping, the total length covered by these segments is 

not larger than the total length of the segments,   
 

  
   

 

  
 

 

   
   

 

   
    

 

  

 

  
 

  

 
 

 
. Because   can be arbitrarily small, in the language of 

measure theory, the denumerable set of points has measure zero. 


